ﻻ يوجد ملخص باللغة العربية
The aim of this paper is to study the long time behavior of solutions to deterministic mean field games systems on Euclidean space. This problem was addressed on the torus ${mathbb T}^n$ in [P. Cardaliaguet, {it Long time average of first order mean field games and weak KAM theory}, Dyn. Games Appl. 3 (2013), 473-488], where solutions are shown to converge to the solution of a certain ergodic mean field games system on ${mathbb T}^n$. By adapting the approach in [A. Fathi, E. Maderna, {it Weak KAM theorem on non compact manifolds}, NoDEA Nonlinear Differential Equations Appl. 14 (2007), 1-27], we identify structural conditions on the Lagrangian, under which the corresponding ergodic system can be solved in $mathbb{R}^{n}$. Then we show that time dependent solutions converge to the solution of such a stationary system on all compact subsets of the whole space.
The goal of this paper is to study the long time behavior of solutions of the first-order mean field game (MFG) systems with a control on the acceleration. The main issue for this is the lack of small time controllability of the problem, which preven
We study first order evolutive Mean Field Games where the Hamiltonian is non-coercive. This situation occurs, for instance, when some directions are forbidden to the generic player at some points. We establish the existence of a weak solution of the
We study a numerical approximation of a time-dependent Mean Field Game (MFG) system with local couplings. The discretization we consider stems from a variational approach described in [Briceno-Arias, Kalise, and Silva, SIAM J. Control Optim., 2017] f
The theory of mean field games is a tool to understand noncooperative dynamic stochastic games with a large number of players. Much of the theory has evolved under conditions ensuring uniqueness of the mean field game Nash equilibrium. However, in so
We analyze a (possibly degenerate) second order mean field games system of partial differential equations. The distinguishing features of the model considered are (1) that it is not uniformly parabolic, including the first order case as a possibility