ترغب بنشر مسار تعليمي؟ اضغط هنا

A combinatorial formula for certain binomial coefficients for Jack polynomials

85   0   0.0 ( 0 )
 نشر من قبل Yusra Naqvi
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a decomposition of the generalized binomial coefficients associated with Jack polynomials into two factors: a stem, which is described explicitly in terms of hooks of the indexing partitions, and a leaf, which inherits various recurrence properties from the binomial coefficients and depends exclusively on the skew diagram. We then derive a direct combinatorial formula for the leaf in the special case where the two indexing partitions differ by at most two rows. This formula also exhibits an unexpected symmetry with respect to the lengths of the two rows.



قيم البحث

اقرأ أيضاً

We present an LLT-type formula for a general power of the nabla operator applied to the Cauchy product for the modified Macdonald polynomials, and use it to deduce a new proof of the generalized shuffle theorem describing $ abla^k e_n$, and the Elias -Hogancamp formula for $( abla^k p_1^n,e_n)$ as corollaries. We give a direct proof of the theorem by verifying that the LLT expansion satisfies the defining properties of $ abla^k$, such as triangularity in the dominance order, as well as a geometric proof based on a method for counting bundles on $mathbb{P}^1$ due to the second author. These formulas are related to an affine paving of the type A unramified affine Springer fiber studied by Goresky, Kottwitz, and MacPherson, and also to Stanleys chromatic symmetric functions.
100 - Curtis Bennett 2018
The Lucas sequence is a sequence of polynomials in s, and t defined recursively by {0}=0, {1}=1, and {n}=s{n-1}+t{n-2} for n >= 2. On specialization of s and t one can recover the Fibonacci numbers, the nonnegative integers, and the q-integers [n]_q. Given a quantity which is expressed in terms of products and quotients of nonnegative integers, one obtains a Lucas analogue by replacing each factor of n in the expression with {n}. It is then natural to ask if the resulting rational function is actually a polynomial in s and t with nonnegative integer coefficients and, if so, what it counts. The first simple combinatorial interpretation for this polynomial analogue of the binomial coefficients was given by Sagan and Savage, although their model resisted being used to prove identities for these Lucasnomials or extending their ideas to other combinatorial sequences. The purpose of this paper is to give a new, even more natural model for these Lucasnomials using lattice paths which can be used to prove various equalities as well as extending to Catalan numbers and their relatives, such as those for finite Coxeter groups.
In 1980, Lusztig introduced the periodic Kazhdan-Lusztig polynomials, which are conjectured to have important information about the characters of irreducible modules of a reductive group over a field of positive characteristic, and also about those o f an affine Kac-Moody algebra at the critical level. The periodic Kazhdan-Lusztig polynomials can be computed by using another family of polynomials, called the periodic $R$-polynomials. In this paper, we prove a (closed) combinatorial formula expressing periodic $R$-polynomials in terms of the doubled Bruhat graph associated to a finite Weyl group and a finite root system.
Recently, Ni and Pan proved a $q$-congruence on certain sums involving central $q$-binomial coefficients, which was conjectured by Guo. In this paper, we give a generalization of this $q$-congruence and confirm another $q$-congruence, also conjecture d by Guo. Our proof uses Ni and Pans technique and a simple $q$-congruence observed by Guo and Schlosser.
We prove a general quadratic formula for basic hypergeometric series, from which simple proofs of several recent determinant and Pfaffian formulas are obtained. A special case of the quadratic formula is actually related to a Gram determinant formula for Askey-Wilson polynomials. We also show how to derive a recent double-sum formula for the moments of Askey-Wilson polynomials from Newtons interpolation formula.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا