ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-Abelian momentum polytopes for products of $CP ^2$

72   0   0.0 ( 0 )
 نشر من قبل James Montaldi
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This is the first of two companion papers. The joint aim is to study a generalization to higher dimension of the point vortex systems familiar in 2-D. In this paper we classify the momentum polytopes for the action of the Lie group SU(3) on products of copies of complex projective 4-space. For 2 copies, the momentum polytope is simply a line segment, which can sit in the positive Weyl chamber in a small number of ways. For a product of 3 copies there are 8 different types of generic momentum polytope, and numerous transition polytopes, all of which are classified here. The type of polytope depends on the weights of the symplectic form on each copy of projective space. In the second paper we use techniques of symplectic reduction to study the possible dynamics of interacting generalized point vortices. The results can be applied to determine the inequalities satisfied by the eigenvalues of the sum of up to three 3x3 Hermitian matrices with double eigenvalues.

قيم البحث

اقرأ أيضاً

This paper develops the theory of Dirac reduction by symmetry for nonholonomic systems on Lie groups with broken symmetry. The reduction is carried out for the Dirac structures, as well as for the associated Lagrange-Dirac and Hamilton-Dirac dynamica l systems. This reduction procedure is accompanied by reduction of the associated variational structures on both Lagrangian and Hamiltonian sides. The reduced dynamical systems obtained are called the implicit Euler-Poincare-Suslov equations with advected parameters and the implicit Lie-Poisson-Suslov equations with advected parameters. The theory is illustrated with the help of finite and infinite dimensional examples. It is shown that equations of motion for second order Rivlin-Ericksen fluids can be formulated as an infinite dimensional nonholonomic system in the framework of the present paper.
$W$-representation is a miraculous possibility to define a non-perturbative (exact) partition function as an exponential action of somehow integrated Ward identities on unity. It is well known for numerous eigenvalue matrix models when the relevant o perators are of a kind of $W$-operators: for the Hermitian matrix model with the Virasoro constraints, it is a $W_3$-like operator, and so on. We extend this statement to the monomial generalized Kontsevich models (GKM), where the new feature is the appearance of an ordered P-exponential for the set of non-commuting operators of different gradings.
Products of $M$ i.i.d. non-Hermitian random matrices of size $N times N$ relate Gaussian fluctuation of Lyapunov and stability exponents in dynamical systems (finite $N$ and large $M$) to local eigenvalue universality in random matrix theory (finite $M$ and large $N$). The remaining task is to study local eigenvalue statistics as $M$ and $N$ tend to infinity simultaneously, which lies at the heart of understanding two kinds of universal patterns. For products of i.i.d. complex Ginibre matrices, truncated unitary matrices and spherical ensembles, as $M+Nto infty$ we prove that local statistics undergoes a transition when the relative ratio $M/N$ changes from $0$ to $infty$: Ginibre statistics when $M/N to 0$, normality when $M/Nto infty$, and new critical phenomena when $M/Nto gamma in (0, infty)$.
Fluid flow in pipes with discontinuous cross section or with kinks is described through balance laws with a non conservative product in the source. At jump discontinuities in the pipes geometry, the physics of the problem suggests how to single out a solution. On this basis, we present a definition of solution for a general BV geometry and prove an existence result, consistent with a limiting procedure from piecewise constant geometries. In the case of a smoothly curved pipe we thus justify the appearance of the curvature in the source term of the linear momentum equation. These results are obtained as consequences of a general existence result devoted to abstract balance laws with non conservative source terms.
We discuss symplectic cutting for Hamiltonian actions of non-Abelian compact groups. By using a degeneration based on the Vinberg monoid we give, in good cases, a global quotient description of a surgery construction introduced by Woodward and Meinre nken, and show it can be interpreted in algebro-geometric terms. A key ingredient is the `universal cut of the cotangent bundle of the group itself, which is identified with a moduli space of framed bundles on chains of projective lines recently introduced by the authors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا