ﻻ يوجد ملخص باللغة العربية
This is the first of two companion papers. The joint aim is to study a generalization to higher dimension of the point vortex systems familiar in 2-D. In this paper we classify the momentum polytopes for the action of the Lie group SU(3) on products of copies of complex projective 4-space. For 2 copies, the momentum polytope is simply a line segment, which can sit in the positive Weyl chamber in a small number of ways. For a product of 3 copies there are 8 different types of generic momentum polytope, and numerous transition polytopes, all of which are classified here. The type of polytope depends on the weights of the symplectic form on each copy of projective space. In the second paper we use techniques of symplectic reduction to study the possible dynamics of interacting generalized point vortices. The results can be applied to determine the inequalities satisfied by the eigenvalues of the sum of up to three 3x3 Hermitian matrices with double eigenvalues.
This paper develops the theory of Dirac reduction by symmetry for nonholonomic systems on Lie groups with broken symmetry. The reduction is carried out for the Dirac structures, as well as for the associated Lagrange-Dirac and Hamilton-Dirac dynamica
$W$-representation is a miraculous possibility to define a non-perturbative (exact) partition function as an exponential action of somehow integrated Ward identities on unity. It is well known for numerous eigenvalue matrix models when the relevant o
Products of $M$ i.i.d. non-Hermitian random matrices of size $N times N$ relate Gaussian fluctuation of Lyapunov and stability exponents in dynamical systems (finite $N$ and large $M$) to local eigenvalue universality in random matrix theory (finite
Fluid flow in pipes with discontinuous cross section or with kinks is described through balance laws with a non conservative product in the source. At jump discontinuities in the pipes geometry, the physics of the problem suggests how to single out a
We discuss symplectic cutting for Hamiltonian actions of non-Abelian compact groups. By using a degeneration based on the Vinberg monoid we give, in good cases, a global quotient description of a surgery construction introduced by Woodward and Meinre