ﻻ يوجد ملخص باللغة العربية
We discuss symplectic cutting for Hamiltonian actions of non-Abelian compact groups. By using a degeneration based on the Vinberg monoid we give, in good cases, a global quotient description of a surgery construction introduced by Woodward and Meinrenken, and show it can be interpreted in algebro-geometric terms. A key ingredient is the `universal cut of the cotangent bundle of the group itself, which is identified with a moduli space of framed bundles on chains of projective lines recently introduced by the authors.
We give characterizations of a finite group $G$ acting symplectically on a rational surface ($mathbb{C}P^2$ blown up at two or more points). In particular, we obtain a symplectic version of the dichotomy of $G$-conic bundles versus $G$-del Pezzo surf
We study the existence of symplectic resolutions of quotient singularities V/G where V is a symplectic vector space and G acts symplectically. Namely, we classify the symplectically irreducible and imprimitive groups, excluding those of the form $K r
Given a symplectic three-fold $(M,omega)$ we show that for a generic almost complex structure $J$ which is compatible with $omega$, there are finitely many $J$-holomorphic curves in $M$ of any genus $ggeq 0$ representing a homology class $beta$ in $H
We construct a multiplicative spectral sequence converging to the symplectic cohomology ring of any affine variety $X$, with first page built out of topological invariants associated to strata of any fixed normal crossings compactification $(M,mathbf
In this paper we exploit the geometric approach to the virtual fundamental class, due to Fukaya-Ono and Li-Tian, to compare the virtual fundamental classes of stable maps to a symplectic manifold and a symplectic submanifold whenever all constrained