ﻻ يوجد ملخص باللغة العربية
Future wireless networks will progressively displace service provisioning towards the edge to accommodate increasing growth in traffic. This paradigm shift calls for smart policies to efficiently share network resources and ensure service delivery. In this paper, we consider a cognitive dynamic network architecture (CDNA) where primary users (PUs) are rewarded for sharing their connectivities and acting as access points for secondary users (SUs). CDNA creates opportunities for capacity increase by network-wide harvesting of unused data plans and spectrum from different operators. Different policies for data and spectrum trading are presented based on centralized, hybrid and distributed schemes involving primary operator (PO), secondary operator (SO) and their respective end users. In these schemes, PO and SO progressively delegate trading to their end users and adopt more flexible cooperation agreements to reduce computational time and track available resources dynamically. A novel matching-with-pricing algorithm is presented to enable self-organized SU-PU associations, channel allocation and pricing for data and spectrum with low computational complexity. Since connectivity is provided by the actual users, the success of the underlying collaborative market relies on the trustworthiness of the connections. A behavioral-based access control mechanism is developed to incentivize/penalize honest/dishonest behavior and create a trusted collaborative network. Numerical results show that the computational time of the hybrid scheme is one order of magnitude faster than the benchmark centralized scheme and that the matching algorithm reconfigures the network up to three orders of magnitude faster than in the centralized scheme.
In this paper, we consider context-awareness to enhance route reliability and robustness in multi-hop cognitive networks. A novel context-aware route discovery protocol is presented to enable secondary users to select the route according to their QoS
We study the profit maximization problem of a cognitive virtual network operator in a dynamic network environment. We consider a downlink OFDM communication system with various network dynamics, including dynamic user demands, uncertain sensing spect
In cognitive radio networks (CRNs), spectrum trading is an efficient way for secondary users (SUs) to achieve dynamic spectrum access and to bring economic benefits for the primary users (PUs). Existing methods requires full payment from SU, which bl
In order to meet the constantly increasing demand by mobile terminals for higher data rates with limited wireless spectrum resource, cognitive radio and spectrum aggregation technologies have attracted much attention due to its capacity in improving
With the development of the 5G and Internet of Things, amounts of wireless devices need to share the limited spectrum resources. Dynamic spectrum access (DSA) is a promising paradigm to remedy the problem of inefficient spectrum utilization brought u