ﻻ يوجد ملخص باللغة العربية
Here, we explore the combination of sub-wavelength, two-dimensional atomic arrays and Rydberg interactions as a powerful platform to realize strong, coherent interactions between individual photons with high fidelity. In particular, the spatial ordering of the atoms guarantees efficient atom-light interactions without the possibility of scattering light into unwanted directions, for example, allowing the array to act as a perfect mirror for individual photons. In turn, Rydberg interactions enable single photons to alter the optical response of the array within a potentially large blockade radius $R_b$, which can effectively punch a large hole for subsequent photons. We show that such a system enables a coherent photon-photon gate or switch, with an error scaling $sim R_b^{-4}$ that is significantly better than the best known scaling in a disordered ensemble. We also investigate the optical properties of the system in the limit of strong input intensities. Although this a priori represents a complicated, many-body quantum driven dissipative system, we find that the behavior can be captured well by a semi-classical model based on holes punched in a classical mirror.
We find exponentially many exact quantum many-body scar states in a two-dimensional PXP model -- an effective model for a two-dimensional Rydberg atom array in the nearest-neighbor blockade regime. Such scar states are remarkably simple valence bond
We investigate the interaction of weak light fields with two-dimensional lattices of atoms, in which two-photon coupling establishes conditions of electromagnetically induced transparency and excites high lying atomic Rydberg states. This system feat
Controlling non-equilibrium quantum dynamics in many-body systems is an outstanding challenge as interactions typically lead to thermalization and a chaotic spreading throughout Hilbert space. We experimentally investigate non-equilibrium dynamics fo
We propose a nanophotonic platform for topological quantum optics. Our system is composed of a two-dimensional lattice of non-linear quantum emitters with optical transitions embedded in a photonic crystal slab. The emitters interact through the guid
We demonstrate high fidelity two-qubit Rydberg blockade and entanglement in a two-dimensional qubit array. The qubit array is defined by a grid of blue detuned lines of light with 121 sites for trapping atomic qubits. Improved experimental methods ha