ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum nonlinear optics based on two-dimensional Rydberg atom arrays

90   0   0.0 ( 0 )
 نشر من قبل Daniel Goncalves Romeu
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Here, we explore the combination of sub-wavelength, two-dimensional atomic arrays and Rydberg interactions as a powerful platform to realize strong, coherent interactions between individual photons with high fidelity. In particular, the spatial ordering of the atoms guarantees efficient atom-light interactions without the possibility of scattering light into unwanted directions, for example, allowing the array to act as a perfect mirror for individual photons. In turn, Rydberg interactions enable single photons to alter the optical response of the array within a potentially large blockade radius $R_b$, which can effectively punch a large hole for subsequent photons. We show that such a system enables a coherent photon-photon gate or switch, with an error scaling $sim R_b^{-4}$ that is significantly better than the best known scaling in a disordered ensemble. We also investigate the optical properties of the system in the limit of strong input intensities. Although this a priori represents a complicated, many-body quantum driven dissipative system, we find that the behavior can be captured well by a semi-classical model based on holes punched in a classical mirror.

قيم البحث

اقرأ أيضاً

We find exponentially many exact quantum many-body scar states in a two-dimensional PXP model -- an effective model for a two-dimensional Rydberg atom array in the nearest-neighbor blockade regime. Such scar states are remarkably simple valence bond solids despite being at effectively infinite temperature, and thus strongly violate the eigenstate thermalization hypothesis. Given a particular boundary condition, such eigenstates have integer-valued energies. Moreover, certain charge-density-wave initial states give rise to strong oscillations in the Rydberg excitation density after a quantum quench and tower-like structures in their overlaps with eigenstates.
We investigate the interaction of weak light fields with two-dimensional lattices of atoms, in which two-photon coupling establishes conditions of electromagnetically induced transparency and excites high lying atomic Rydberg states. This system feat ures different interactions that act on disparate length scales, from zero-range defect scattering of atomic excitations and finite-range dipole exchange interactions to long-range Rydberg-state interactions that span the entire array. Analyzing their interplay, we identify conditions that yield a nonlinear quantum mirror which coherently splits incident fields into correlated photon-pairs in a single transverse mode, while transmitting single photons unaffected. Such strong photon-photon interactions in the absence of otherwise detrimental photon losses in Rydberg-EIT arrays opens up a promising approach for the generation and manipulation of quantum light, and the exploration of many-body phenomena with interacting photons.
Controlling non-equilibrium quantum dynamics in many-body systems is an outstanding challenge as interactions typically lead to thermalization and a chaotic spreading throughout Hilbert space. We experimentally investigate non-equilibrium dynamics fo llowing rapid quenches in a many-body system composed of 3 to 200 strongly interacting qubits in one and two spatial dimensions. Using a programmable quantum simulator based on Rydberg atom arrays, we probe coherent revivals corresponding to quantum many-body scars. Remarkably, we discover that scar revivals can be stabilized by periodic driving, which generates a robust subharmonic response akin to discrete time-crystalline order. We map Hilbert space dynamics, geometry dependence, phase diagrams, and system-size dependence of this emergent phenomenon, demonstrating novel ways to steer entanglement dynamics in many-body systems and enabling potential applications in quantum information science.
We propose a nanophotonic platform for topological quantum optics. Our system is composed of a two-dimensional lattice of non-linear quantum emitters with optical transitions embedded in a photonic crystal slab. The emitters interact through the guid ed modes of the photonic crystal, and a uniform magnetic field gives rise to large topological band gaps and an almost completely flat topological band. Topological edge states arise on the boundaries of the system that are protected by the large gap against missing lattice sites and to the inhomogeneous broadening of emitters. These results pave the way for exploring topological many-body states in quantum optical systems.
We demonstrate high fidelity two-qubit Rydberg blockade and entanglement in a two-dimensional qubit array. The qubit array is defined by a grid of blue detuned lines of light with 121 sites for trapping atomic qubits. Improved experimental methods ha ve increased the observed Bell state fidelity to $F_{rm Bell}=0.86(2)$. Accounting for errors in state preparation and measurement (SPAM) we infer a fidelity of $F_{rm Bell}^{rm -SPAM}=0.88$. Accounting for errors in single qubit operations we infer that a Bell state created with the Rydberg mediated $C_Z$ gate has a fidelity of $F_{rm Bell}^{C_Z}=0.89$. Comparison with a detailed error model based on quantum process matrices indicates that finite atom temperature and laser noise are the dominant error sources contributing to the observed gate infidelity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا