ﻻ يوجد ملخص باللغة العربية
Using a classical technique introduced by Achi E. Brandt for elliptic equations, we study a general class of nonlocal equations obtained as a superposition of classical and fractional operators in different variables. We obtain that the increments of the derivative of the solution in the direction of a variable experiencing classical diffusion are controlled linearly, with a logarithmic correction. From this, we obtain Holder estimates for the solution.
We prove in this paper the global Lorentz estimate in term of fractional-maximal function for gradient of weak solutions to a class of p-Laplace elliptic equations containing a non-negative Schrodinger potential which belongs to reverse Holder classe
We consider a class of semilinear nonlocal problems with vanishing exterior condition and establish a Ambrosetti-Prodi type phenomenon when the nonlinear term satisfies certain conditions. Our technique makes use of the probabilistic tools and heat kernel estimates.
Mean value formulas are of great importance in the theory of partial differential equations: many very useful results are drawn, for instance, from the well known equivalence between harmonic functions and mean value properties. In the nonlocal setti
In this paper we use a unified way studying the decay estimate for a class of dispersive semigroup given by $e^{itphi(sqrt{-Delta})}$, where $phi: mathbb{R}^+to mathbb{R}$ is smooth away from the origin. Especially, the decay estimates for the soluti
In this paper, we proceed to study the nonlocal diffusion problem proposed by Li and Wang [8], where the left boundary is fixed, while the right boundary is a nonlocal free boundary. We first give some accurate estimates on the longtime behavior by c