ﻻ يوجد ملخص باللغة العربية
This paper is a manual with tips and tricks for programming tensor network algorithms with global $SU(2)$ symmetry. We focus on practical details that are many times overlooked when it comes to implementing the basic building blocks of codes, such as useful data structures to store the tensors, practical ways of manipulating them, and so forth. Here we do not restrict ourselves to any specific tensor network method, but keep always in mind that the implementation should scale well for simulations of higher-dimensional systems using, e.g., Projected Entangled Pair States, where tensors with many indices may show up. To this end, the structural tensors (or intertwiners) that arise in the usual decomposition of $SU(2)$-symmetric tensors are never explicitly stored throughout the simulation. Instead, we store and manipulate the corresponding fusion trees - an algebraic specification of the symmetry constraints on the tensor - in order to implement basic $SU(2)$-symmetric tensor operations.
We implement and benchmark tensor network algorithms with $SU(2)$ symmetry for systems in two spatial dimensions and in the thermodynamic limit. Specifically, we implement $SU(2)$-invaria
We show that Projected Entangled-Pair States (PEPS) are able to describe critical, fermionic systems exhibiting both 1d and 0d Fermi surfaces on a 2d lattice. In the thermodynamic limit, the energy precision as a function of the bond dimension improv
We present systematic constructions of tensor-network wavefunctions for bosonic symmetry protected topological (SPT) phases respecting both onsite and spatial symmetries. From the classification point of view, our results show that in spatial dimensi
We present a tree-tensor-network-based method to study strongly correlated systems with nonlocal interactions in higher dimensions. Although the momentum-space and quantum-chemist
We revisit the corner transfer matrix renormalization group (CTMRG) method of Nishino and Okunishi for contracting two-dimensional (2D) tensor networks and demonstrate that its performance can be substantially improved by determining the tensors usin