ترغب بنشر مسار تعليمي؟ اضغط هنا

Coarse-graining via the fluctuation-dissipation theorem and large-deviation theory

116   0   0.0 ( 0 )
 نشر من قبل Alberto Montefusco
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The fluctuation-dissipation theorem is a central result in statistical mechanics and is usually formulated for systems described by diffusion processes. In this paper, we propose a generalization for a wider class of stochastic processes, namely the class of Markov processes that satisfy detailed balance and a large-deviation principle. The generalized fluctuation-dissipation theorem characterizes the deterministic limit of such a Markov process as a generalized gradient flow, a mathematical tool to model a purely irreversible dynamics via a dissipation potential and an entropy function: these are expressed in terms of the large-deviation dynamic rate function of the Markov process and its stationary distribution. We exploit the generalized fluctuation-dissipation theorem to develop a new method of coarse-graining and test it in the context of the passage from the diffusion in a double-well potential to the jump process that describes the simple reaction $A rightleftarrows B$ (Kramers escape problem).



قيم البحث

اقرأ أيضاً

We consider the application of fluctuation relations to the dynamics of coarse-grained systems, as might arise in a hypothetical experiment in which a system is monitored with a low-resolution measuring apparatus. We analyze a stochastic, Markovian j ump process with a specific structure that lends itself naturally to coarse-graining. A perturbative analysis yields a reduced stochastic jump process that approximates the coarse-grained dynamics of the original system. This leads to a non-trivial fluctuation relation that is approximately satisfied by the coarse-grained dynamics. We illustrate our results by computing the large deviations of a particular stochastic jump process. Our results highlight the possibility that observed deviations from fluctuation relations might be due to the presence of unobserved degrees of freedom.
147 - E. Lippiello , M. Baiesi , 2014
We use a relationship between response and correlation function in nonequilibrium systems to establish a connection between the heat production and the deviations from the equilibrium fluctuation-dissipation theorem. This scheme extends the Harada-Sa sa formulation [Phys. Rev. Lett. 95, 130602 (2005)], obtained for Langevin equations in steady states, as it also holds for transient regimes and for discrete jump processes involving small entropic changes. Moreover, a general formulation includes two times and the new concepts of two-time work, kinetic energy, and of a two-time heat exchange that can be related to a nonequilibrium effective temperature. Numerical simulations of a chain of anharmonic oscillators and of a model for a molecular motor driven by ATP hydrolysis illustrate these points.
The fluctuation dissipation theorem (FDT) is the basis for a microscopic description of the interaction between electromagnetic radiation and matter.By assuming the electromagnetic radiation in thermal equilibrium and the interaction in the linear re sponse regime, the theorem interrelates the spontaneous fluctuations of microscopic variables with the kinetic coefficients that are responsible for energy dissipation.In the quantum form provided by Callen and Welton in their pioneer paper of 1951 for the case of conductors, electrical noise detected at the terminals of a conductor was given in terms of the spectral density of voltage fluctuations, $S_V({omega})$, and was related to the real part of its impedance, $Re[Z({omega})]$, by a simple relation.The drawbacks of this relation concern with: (I) the appearance of a zero point contribution which implies a divergence of the spectrum at increasing frequencies; (ii) the lack of detailing the appropriate equivalent-circuit of the impedance, (iii) the neglect of the Casimir effect associated with the quantum interaction between zero-point energy and boundaries of the considered physical system; (iv) the lack of identification of the microscopic noise sources beyond the temperature model. These drawbacks do not allow to validate the relation with experiments. By revisiting the FDT within a brief historical survey, we shed new light on the existing drawbacks by providing further properties of the theorem, focusing on the electrical noise of a two-terminal sample under equilibrium conditions. Accordingly, we will discuss the duality and reciprocity properties of the theorem, its applications to the ballistic transport regime, to the case of vacuum and to the case of a photon gas.
An equilibrium system which is perturbed by an external potential relaxes to a new equilibrium state, a process obeying the fluctuation-dissipation theorem. In contrast, perturbing by nonconservative forces yields a nonequilibrium steady state, and t he fluctuation-dissipation theorem can in general not be applied. Here we exploit a freedom inherent to linear response theory: Force fields which perform work that does not couple statistically to the considered observable can be added without changing the response. Using this freedom, we demonstrate that the fluctuation-dissipation theorem can be applied for certain nonconservative forces. We discuss the case of a nonconservative force field linear in particle coordinates, where the mentioned freedom can be formulated in terms of symmetries. In particular, for the case of shear, this yields a response formula, which we find advantageous over the known Green-Kubo relation in terms of statistical accuracy.
127 - Yuri Levin 2007
We introduce a simple prescription for calculating the spectra of thermal fluctuations of temperature-dependent quantities of the form $hat{delta T}(t)=int d^3vec{r} delta T(vec{r},t) q(vec{r})$. Here $T(vec{r}, t)$ is the local temperature at locati on $vec{r}$ and time $t$, and $q(vec{r})$ is an arbitrary function. As an example of a possible application, we compute the spectrum of thermo-refractive coating noise in LIGO, and find a complete agreement with the previous calculation of Braginsky, Gorodetsky and Vyatchanin. Our method has computational advantage, especially for non-regular or non-symmetric geometries, and for the cases where $q(vec{r})$ is non-negligible in a significant fraction of the total volume.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا