ترغب بنشر مسار تعليمي؟ اضغط هنا

Scale interactions and anisotropy in stable boundary layers

298   0   0.0 ( 0 )
 نشر من قبل Nikki Vercauteren
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Regimes of interactions between motions on different time-scales are investigated in the FLOSSII dataset for nocturnal near-surface stable boundary layer (SBL) turbulence. The non-stationary response of turbulent vertical velocity variance to non-turbulent, sub-mesoscale wind velocity variability is analysed using the bounded variation, finite element, vector autoregressive factor models (FEM-BV-VARX) clustering method. Several locally stationary flow regimes are identified with different influences of sub-meso wind velocity on the turbulent vertical velocity variance. In each flow regime, we analyse multiple scale interactions and quantify the amount of turbulent variability which can be statistically explained by external forcing by the sub-meso wind velocity. The state of anisotropy of the Reynolds stress tensor in the different flow regimes is shown to relate to these different signatures of scale interactions. In flow regimes under considerable influence of the sub-mesoscale wind variability, the Reynolds stresses show a clear preference for strongly anisotropic, one-component states. These periods additionally show stronger persistence in their dynamics, compared to periods of more isotropic stresses. The analyses give insights on how the different topologies relate to non-stationary turbulence triggering by sub-mesoscale motions.

قيم البحث

اقرأ أيضاً

Wall cooling has substantial effects on the development of instabilities and transition processes in hypersonic boundary layers (HBLs). A sequence of linear stability theory, two-dimensional and non-linear three-dimensional DNSs is used to analyze Ma ch~6 boundary layers, with wall temperatures ranging from near-adiabatic to highly cooled conditions, where the second-mode instability radiates energy. Fluid-thermodynamic analysis shows that this radiation comprises both acoustic as well as vortical waves. 2D simulations show that the conventional trapped nature of second-mode instability is ruptured. Although the energy efflux of both acoustic and vortical components increases with wall-cooling, the destabilization effect is much stronger and no significant abatement of pressure perturbations is realized. In the near-adiabatic HBL, the wavepacket remains trapped within the boundary layer and attenuates outside the region of linear instability. However, wavepackets in the cooled-wall HBLs amplify and display nonlinear distortion, and transition more rapidly. The structure of the wavepacket displays different behavior; moderately-cooled walls show bifurcation into a leading turbulent head region and a trailing harmonic region, while highly-cooled wall cases display lower convection speeds and significant wavepacket elongation, with intermittent spurts of turbulence in the wake of the head region. This elongation effect is associated with a weakening of the lateral jet mechanism due to the breakdown of spanwise coherent structures. In moderately cooled-walls, the spatially-localized wall loading is due to coherent structures in the leading turbulent head region. In highly-cooled walls, the elongated near-wall streaks in the wake region of the wavepacket result in more than twice as large levels of skin friction and heat transfer over a sustained period of time.
High-spatial-resolution (HSR) two-component, two-dimensional particle-image-velocimetry (2C-2D PIV) measurements of a zero-pressure-gradient (ZPG) turbulent boundary layer (TBL) and an adverse-pressure-gradient (APG)-TBL were taken in the LMFL High R eynolds number Boundary Layer Wind Tunnel. The ZPG-TBL has a momentum-thickness based Reynolds number $Re_{delta_2} = delta_2 U_e/ u = 7,750$ while the APG-TBL has a $Re_{delta_2} = 16,240$ and a Clausers pressure gradient parameter $beta = delta_1 P_x/tau_w = 2.27$ After analysing the single-exposed PIV image data using a multigrid/multipass digital PIV (Soria, 1996) with in-house software, proper orthogonal decomposition (POD) was performed on the data to separate flow-fields into large- and small-scale motions (LSMs and SSMs), with the LSMs further categorized into high- and low-momentum events. Profiles of the conditionally averaged Reynolds stresses show that the high-momentum events contribute more to the Reynolds stresses than the low-momentum between wall to the end of the log-layer and the opposite is the case in the wake region. The cross-over point of the profiles of the Reynolds stresses from the high- and low-momentum LSMs always has a higher value than the corresponding Reynolds stress from the original ensemble at the same wall-normal location. Furthermore, the cross-over point in the APG-TBL moves further from the wall than in the ZPG-TBL. By removing the velocity fields with LSMs, the estimate of the Reynolds streamwise stress and Reynolds shear stress from the remaining velocity fields is reduced by up to $42 %$ in the ZPG-TBL. The reduction effect is observed to be even larger (up to $50%$) in the APG-TBL. However, the removal of these LSMs has a minimal effect on the Reynolds wall-normal stress in both the ZPG- and APG-TBL.
The effect of rotation on the boundary layers (BLs) in a Rayleigh-Benard (RB) system at a relatively low Rayleigh number, i.e. $Ra = 4times10^7$, is studied for different Pr by direct numerical simulations and the results are compared with laminar BL theory. In this regime we find a smooth onset of the heat transfer enhancement as function of increasing rotation rate. We study this regime in detail and introduce a model based on the Grossmann-Lohse theory to describe the heat transfer enhancement as function of the rotation rate for this relatively low Ra number regime and weak background rotation $Rogtrsim 1$. The smooth onset of heat transfer enhancement observed here is in contrast to the sharp onset observed at larger $Ra gtrsim 10^8$ by Stevens {it{et al.}} [Phys. Rev. Lett. {bf{103}}, 024503, 2009], although only a small shift in the Ra-Ro-Pr phase space is involved.
Four well-resolved LESs of the turbulent boundary layers around a NACA4412 wing section, with Rec ranging from 100,000 to 1,000,000, were performed at 5 degree angle of attack. By comparing the turbulence statistics with those in ZPG TBLs at approxim ately matching Re_tau, we find that the effect of the adverse pressure gradient (APG) is more intense at lower Reynolds numbers. This indicates that at low Re the outer region of the TBL becomes more energized through the wall-normal convection associated to the APG. This is also reflected in the fact that the inner-scaled wall-normal velocity is larger on the suction side at lower Reynolds numbers. In particular, the wing cases at Rec = 200,000 and 400,000 exhibit wall-normal velocities 40% and 20% larger, respectively, than the case with Rec = 1,000,000. Consequently, the outer-region energizing mechanism associated to the APG is complementary to that present in high-Re TBLs.
An experiment was performed using Dual-plane-SPIV in the LMFL boundary layer facility to determine all of the derivative moments needed to estimate the average dissipation rate of the turbulent kinetic energy, $varepsilon$, and its Reynolds stress co unterpart the dissipation tensor, $varepsilon_{ij}$. For this experiment, the Reynolds number was $Re_theta = 7500$ or $Re_tau = 2300$. Part I of this contribution cite{stanislas20} presented in short the experiment and discussed in detail the dissipation profile and all twelve derivative moments required to compute it. The data were compared to a channel flow DNS at approximately the same Reynolds number and to previous results. They were also used to evaluate recent theoretical results for the overlap region. In this Part II the experimental and DNS results are used to evaluate the assumptions of `local isotropy, `local axisymmetry, and `local homogeneity. They are extended to include the full dissipation tensor, $varepsilon_{ij}$ and the `pseudo-dissipation tensor, $mathcal{D}_{ij}$ and explain the strong anisotropy of the dissipation tensors observed. Two important results of the present study are that {it local isotropy} is never valid inside the outer limit of the overlap region, $y/delta_{99} approx 0.1$; and that the assumptions of {it local axisymmetry} and {it local homogeneity} fail inside of $y^+ =100$. The implications of {it homogeneity in planes parallel to the wall} is introduced to partially explain observations throughout the wall layer. The dissipation characteristics in this very near wall region show that $varepsilon_{ij}$ is close to but different from $mathcal{D}_{ij}$ .
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا