ﻻ يوجد ملخص باللغة العربية
A conceptual difficulty in formulating the density functional theory of the fractional quantum Hall effect is that while in the standard approach the Kohn-Sham orbitals are either fully occupied or unoccupied, the physics of the fractional quantum Hall effect calls for fractionally occupied Kohn-Sham orbitals. This has necessitated averaging over an ensemble of Slater determinants to obtain meaningful results. We develop an alternative approach in which we express and minimize the grand canonical potential in terms of the composite fermion variables. This provides a natural resolution of the fractional-occupation problem because the fully occupied orbitals of composite fermions automatically correspond to fractionally occupied orbitals of electrons. We demonstrate the quantitative validity of our approach by evaluating the density profile of fractional Hall edge as a function of temperature and the distance from the delta dopant layer and showing that it reproduces edge reconstruction in the expected parameter region.
A simple one-dimensional model is proposed, in which N spinless repulsively interacting fermions occupy M>N degenerate states. It is argued that the energy spectrum and the wavefunctions of this system strongly resemble the spectrum and wavefunctions
We measure the chemical potential jump across the fractional gap in the low-temperature limit in the two-dimensional electron system of GaAs/AlGaAs single heterojunctions. In the fully spin-polarized regime, the gap for filling factor nu=1/3 increase
We directly measure the chemical potential jump in the low-temperature limit when the filling factor traverses the nu = 1/3 and nu = 2/5 fractional gaps in two-dimensional (2D) electron system in GaAs/AlGaAs single heterojunctions. In high magnetic f
We investigate the recently introduced geometric quench protocol for fractional quantum Hall (FQH) states within the framework of exactly solvable quantum Hall matrix models. In the geometric quench protocol a FQH state is subjected to a sudden chang
We study transport properties of a charge qubit coupling two chiral Luttinger liquids, realized by two antidots placed between the edges of an integer $ u=1$ or fractional $ u=1/3$ quantum Hall bar. We show that in the limit of a large capacitive cou