ﻻ يوجد ملخص باللغة العربية
We investigate the bursty star formation histories (SFHs) of dwarf galaxies using the distribution of log($L_{Halpha}/L_{UV}$) of 185 local galaxies. We expand on the work of Weisz et al. 2012 to consider a wider range of SFHs and stellar metallicities, and show that there are large degeneracies in a periodic, top-hat burst model. We argue that all galaxies of a given mass have similar SFHs and we can therefore include the $L_{Halpha}$ distributions (subtracting the median trend with stellar mass, referred to as $Delta text{log}(L_{Halpha})$) in our analyses. $Delta text{log}(L_{Halpha})$ traces the amplitude of the bursts, and log($L_{Halpha}/L_{UV}$) is a function of timescale, amplitude, and shape of the bursts. We examine the 2-dimensional distribution of these two indicators constrain the SFHs. We use exponentially rising/falling bursts to determine timescales ($e$-folding time, $tau$). We find that galaxies below $10^{7.5}$ M$_{odot}$ undergo large (amplitudes of $sim 100$) and rapid ($tau < 30$ Myr) bursts, while galaxies above $10^{8.5}$ M$_{odot}$ experience smaller (maximum amplitudes $sim 10$), slower ($tau gtrsim 300$ Myr) bursts. We compare to the FIRE-2 hydrodynamical simulations and find that the burst amplitudes agree with observations, but they are too rapid in more massive galaxies ($M_* > 10^8$ M$_{odot}$). Finally, we confirm that stochastic sampling of the stellar mass function can not reproduce the observed distributions unless the standard assumptions of cluster and stellar mass functions are changed. With the next generation of telescopes, measurements of $L_{UV}$ and $L_{Halpha}$ will become available for dwarf galaxies at high-redshift, enabling similar analyses of galaxies in the early universe.
We discuss the feasibility of detecting the gauge boson of the $U(1)_{L_{mu}-L_{tau}}$ symmetry, which possesses a mass in the range between MeV and GeV, at the Belle-II experiment. The kinetic mixing between the new gauge boson $Z$ and photon is for
We consider elliptic equations with operators $L=a^{ij}D_{ij}+b^{i}D_{i}-c$ with $a$ being almost in VMO, $bin L_{d}$ and $cin L_{q}$, $cgeq0$, $d>qgeq d/2$. We prove the solvability of $Lu=fin L_{p}$ in bounded $C^{1,1}$-domains, $1<pleq q$, and of
The tightening of the constraints on the standard thermal WIMP scenario has forced physicists to propose alternative dark matter (DM) models. One of the most popular alternate explanations of the origin of DM is the non-thermal production of DM via f
The star formation histories (SFHs) of dwarf galaxies are thought to be emph{bursty}, with large -- order of magnitude -- changes in the star formation rate on timescales similar to O-star lifetimes. As a result, the standard interpretations of many
We present an analysis of the $Rlesssim 1.5$ kpc core regions of seven simulated Milky Way mass galaxies, from the FIRE-2 (Feedback in Realistic Environments) cosmological zoom-in simulation suite, for a finely sampled period ($Delta t = 2.2$ Myr) of