ﻻ يوجد ملخص باللغة العربية
The tightening of the constraints on the standard thermal WIMP scenario has forced physicists to propose alternative dark matter (DM) models. One of the most popular alternate explanations of the origin of DM is the non-thermal production of DM via freeze-in. In this scenario the DM never attains thermal equilibrium with the thermal soup because of its feeble coupling strength ($sim 10^{-12}$) with the other particles in the thermal bath and is generally called the Feebly Interacting Massive Particle (FIMP). In this work, we present a gauged U(1)$_{L_{mu}-L_{tau}}$ extension of the Standard Model (SM) which has a scalar FIMP DM candidate and can consistently explain the DM relic density bound. In addition, the spontaneous breaking of the U(1)$_{L_{mu}-L_{tau}}$ gauge symmetry gives an extra massive neutral gauge boson $Z_{mutau}$ which can explain the muon ($g-2$) data through its additional one-loop contribution to the process. Lastly, presence of three right-handed neutrinos enable the model to successfully explain the small neutrino masses via the Type-I seesaw mechanism. The presence of the spontaneously broken U(1)$_{L_{mu}-L_{tau}}$ gives a particular structure to the light neutrino mass matrix which can explain the peculiar mixing pattern of the light neutrinos.
Motivated by the growing evidence for lepton flavour universality violation after the first results from Fermilabs muon $(g-2)$ measurement, we revisit one of the most widely studied anomaly free extensions of the standard model namely, gauged $L_{mu
Very recently, the Fermi-Lab reported the new experimental combined results on the magnetic momentum of muon with a 4.2$sigma$ discrepancy compared with the expectation of the Standard Model cite{Fermi_Lab}. A new light gauge boson $X$ in the $L_{mu}
The observation of neutrino masses, mixing and the existence of dark matter are amongst the most important signatures of physics beyond the Standard Model (SM). In this paper, we propose to extend the SM by a local $L_mu - L_tau$ gauge symmetry, two
Motivated by the growing evidence for the possible lepton flavour universality violation after the first results from Fermilabs muon $(g-2)$ measurement, we revisit one of the most widely studied anomaly free extensions of the standard model namely,
We propose an anomaly free unified scenario by invocation of an extra local ${rm U(1)}_{L_{mu}-L_{tau}}$ gauge symmetry. This scenario simultaneously resolves the $R_{K^{(*)}}$ anomalies, the dark matter puzzle and the long-standing discrepancy in mu