ﻻ يوجد ملخص باللغة العربية
We treat ${}^6$Li as an effective three-body ($n$-$p$-$alpha$) system and compute the $d$-$alpha$ $S-$wave scattering length and three-body separation energy of ${}^6$Li for a wide variety of nucleon-nucleon and $alpha$-nucleon potentials which have the same (or nearly the same) phase shifts. The Coulomb interaction in the $p$-$alpha$ subsystem is omitted. The results of all calculations lie on a one-parameter curve in the plane defined by the $d$-$alpha$ $S-$wave scattering length and the amount by which ${}^6$Li is bound with respect to the $n$-$p$-$alpha$ threshold. We argue that these aspects of the $n$-$p$-$alpha$ system can be understood using few-body universality and that ${}^6$Li can thus usefully be thought of as a two-nucleon halo nucleus.
Using realistic wave functions, the proton-neutron and proton-proton momentum distributions in $^3He$ and $^4He$ are calculated as a function of the relative, $k_{rel}$, and center of mass, $K_{CM}$, momenta, and the angle between them. For large val
Hadronic composite states are introduced as few-body systems in hadron physics. The $Lambda(1405)$ resonance is a good example of the hadronic few-body systems. It has turned out that $Lambda(1405)$ can be described by hadronic dynamics in a modern t
A comparative analysis of the astrophysical S factor and the reaction rate for the direct $ alpha(d,gamma)^{6}{rm Li}$ capture reaction, and the primordial abundance of the $^6$Li element, resulting from two-body, three-body and combined cluster mode
A convenient framework for dealing with hadron structure and hadronic physics in the few-GeV energy range is relativistic quantum mechanics. Unlike relativistic quantum field theory, one deals with a fixed, or at least restricted number of degrees of
{bf Background} Deuteron induced reactions are widely used to probe nuclear structure and astrophysical information. Those (d,p) reactions may be viewed as three-body reactions and described with Faddeev techniques. {bf Purpose} Faddeev-AGS equatio