ﻻ يوجد ملخص باللغة العربية
Hadronic composite states are introduced as few-body systems in hadron physics. The $Lambda(1405)$ resonance is a good example of the hadronic few-body systems. It has turned out that $Lambda(1405)$ can be described by hadronic dynamics in a modern technology which incorporates coupled channel unitarity framework and chiral dynamics. The idea of the hadronic $bar KN$ composite state of $Lambda(1405)$ is extended to kaonic few-body states. It is concluded that, due to the fact that $K$ and $N$ have similar interaction nature in s-wave $bar K$ couplings, there are few-body quasibound states with kaons systematically just below the break-up thresholds, like $bar KNN$, $bar KKN$ and $bar KKK$, as well as $Lambda(1405)$ as a $bar KN$ quasibound state and $f_{0}(980)$ and $a_{0}(980)$ as $bar KK$.
A brief review of relativistic effects in few-body systems, of theoretical approaches, recent developments and applications is given. Manifestations of relativistic effects in the binding energies, in the electromagnetic form factors and in three-bod
We present a work which is meant to inspire the few-body practitioners to venture into the study of new, more exotic, systems and to hadron physicists, working mostly on two-body problems, to move in the direction of studying related few-body systems
We present a complete calculation of nucleon-deuteron scattering as well as ground and low-lying excited states of light nuclei in the mass range A=3-16 up through next-to-next-to-leading order in chiral effective field theory using semilocal coordin
Exclusive reactions induced at high momentum transfer in few body systems provide us with an original way to study the production and propagation of hadrons in cold nuclear matter. In very well defined parts of the phase space, the reaction amplitude
Twenty years after P. Sauer released the state of the art Faddeev solution of the bound state three nucleon systems, I revisit photo and electrodisengration of few body systems with a special emphasis on the prospects opened at Jefferson Laboratory.