ﻻ يوجد ملخص باللغة العربية
LiOsO3 is one of the first materials identified in a recent literature as a polar metal, a class of materials that are simultaneously noncentrosymmetric and metallic. In this work, the linear and nonlinear optical susceptibility of LiOsO3 is studied by means of ellipsometry and optical second harmonic generation (SHG). Strong optical birefringence is observed using spectroscopic ellipsometry. The nonlinear optical susceptibility extracted from SHG polarimetry reveals that the tensor components are of the same magnitude as in isostructural insulator LiNbO3, except the component along the polar axis d33, which is suppressed by an order of magnitude. Temperature-dependent SHG measurements in combination with Raman spectroscopy indicate a continuous order-disorder type polar phase transition at 140 K. Linear and nonlinear optical microscopy techniques reveal 109 deg/71 deg ferroelastic domain walls, like in other trigonal ferroelectrics. No 180 deg polar domain walls are observed to emerge across the phase transition.
The octahedral tilting and ferroelectric-like structural transition of LiOsO3 metallic perovskite [Nature Materials 12, 1024 (2013)] was examined using first-principles density-functional theory. In LiOsO3, a-a-a- octahedral titling mode is responsib
Metals cannot exhibit ferroelectricity because static internal electric fields are screened by conduction electrons, but in 1965, Anderson and Blount predicted the possibility of a ferroelectric metal, in which a ferroelectric-like structural transit
Ferroelectric materials contain a switchable spontaneous polarization that persists even in the absence of an external electric field. The coexistence of ferroelectricity and metallicity in a material appears to be illusive, since polarization is ill
Local inhomogeneities known as polar nanoregions (PNR) play a key role in governing the dielectric properties of relaxor ferroelectrics - a special class of material that exhibits an enormous electromechanical response and is easily polarized with an
Although Weyl fermions have proven elusive in high-energy physics, their existence as emergent quasiparticles has been predicted in certain crystalline solids in which either inversion or time-reversal symmetry is brokencite{WanPRB2011,BurkovPRL2011,