ﻻ يوجد ملخص باللغة العربية
Metals cannot exhibit ferroelectricity because static internal electric fields are screened by conduction electrons, but in 1965, Anderson and Blount predicted the possibility of a ferroelectric metal, in which a ferroelectric-like structural transition occurs in the metallic state. Up to now, no clear example of such a material has been identified. Here we report on a centrosymmetric (R-3c) to non-centrosymmetric (R3c) transition in metallic LiOsO3 that is structurally equivalent to the ferroelectric transition of LiNbO3. The transition involves a continuous shift in the mean position of Li+ ions on cooling below 140K. Its discovery realizes the scenario described by Anderson and Blount, and establishes a new class of materials whose properties may differ from those of normal metals.
LiOsO3 is one of the first materials identified in a recent literature as a polar metal, a class of materials that are simultaneously noncentrosymmetric and metallic. In this work, the linear and nonlinear optical susceptibility of LiOsO3 is studied
Synchrotron X-ray total scattering studies of structural changes in rutile VO2 at the metal-insulator transition temperature of 340 K reveal that monoclinic and tetragonal phases of VO2 coexist in equilibrium, as expected for a first-order phase tran
A pressure-induced simultaneous metal-insulator transition (MIT) and structural-phase transformation in lithium hydride with about 1% volume collapse has been predicted by means of the local density approximation (LDA) in conjunction with an all-elec
Rutile ($R$) phase VO$_2$ is a quintessential example of a strongly correlated bad-metal, which undergoes a metal-insulator transition (MIT) concomitant with a structural transition to a V-V dimerized monoclinic phase below T$_{MIT} sim 340K$. It has
The flat band has attracted a lot of attention because it gives rise to many exotic phases, as recently demonstrated in magic angle twisted bilayer graphene. Here, based on first-principles calculations, we identify a metal-insulator transition in bo