ترغب بنشر مسار تعليمي؟ اضغط هنا

Scale dependence of energy transfer in turbulent plasma

141   0   0.0 ( 0 )
 نشر من قبل Yan Yang
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In the context of space and astrophysical plasma turbulence and particle heating, several vocabularies emerge for estimating turbulent energy dissipation rate, including Kolmogorov-Yaglom third-order law and, in its various forms, $boldsymbol{j}cdotboldsymbol{E}$ (work done by the electromagnetic field on particles), and $-left( boldsymbol{P} cdot abla right) cdot boldsymbol{u}$ (pressure-strain interaction), to name a couple. It is now understood that these energy transfer channels, to some extent, are correlated with coherent structures. In particular, we find that different energy dissipation proxies, although not point-wise correlated, are concentrated in proximity to each other, for which they decorrelate in a few $d_i$(s). However, the energy dissipation proxies dominate at different scales. For example, there is an inertial range over which the third-order law is meaningful. Contributions from scale bands stemming from scale-dependent spatial filtering show that, the energy exchange through $boldsymbol{j}cdotboldsymbol{E}$ mainly results from large scales, while the energy conversion from fluid flow to internal through $-left( boldsymbol{P} cdot abla right) cdot boldsymbol{u}$ dominates at small scales.



قيم البحث

اقرأ أيضاً

In weakly collisional space plasmas, the turbulent cascade provides most of the energy that is dissipated at small scales by various kinetic processes. Understanding the characteristics of such dissipative mechanisms requires the accurate knowledge o f the fluctuations that make energy available for conversion at small scales, as different dissipation processes are triggered by fluctuations of a different nature. The scaling properties of different energy channels are estimated here using a proxy of the local energy transfer, based on the third-order moment scaling law for magnetohydrodynamic turbulence. In particular, the sign-singularity analysis was used to explore the scaling properties of the alternating positive-negative energy fluxes, thus providing information on the structure and topology of such fluxes for each of the different type of fluctuations. The results show the highly complex geometrical nature of the flux, and that the local contributions associated with energy and cross-helicity nonlinear transfer have similar scaling properties. Consequently, the fractal properties of current and vorticity structures are similar to those of the Alfvenic fluctuations.
We report the observations of an electron vortex magnetic hole corresponding to a new type of coherent structures in the magnetosheath turbulent plasma using the Magnetospheric Multiscale (MMS) mission data. The magnetic hole is characterized by a ma gnetic depression, a density peak, a total electron temperature increase (with a parallel temperature decrease but a perpendicular temperature increase), and strong currents carried by the electrons. The current has a dip in the center of the magnetic hole and a peak in the outer region of the magnetic hole. The estimated size of the magnetic hole is about 0.23 r{ho}i (~ 30 r{ho}e) in the circular cross-section perpendicular to its axis, where r{ho}i and r{ho}e are respectively the proton and electron gyroradius. There are no clear enhancement seen in high energy electron fluxes, but an enhancement in the perpendicular electron fluxes at ~ 90{deg} pitch angles inside the magnetic hole is seen, implying that the electron are trapped within it. The variations of the electron velocity components Vem and Ven suggest that an electron vortex is formed by trapping electrons inside the magnetic hole in the circular cross-section (in the M-N plane). These observations demonstrate the existence of a new type of coherent structures behaving as an electron vortex magnetic hole in turbulent space plasmas as predicted by recent kinetic simulations.
Direct evidence of an inertial-range turbulent energy cascade has been provided by spacecraft observations in heliospheric plasmas. In the solar wind, the average value of the derived heating rate near 1 au is $sim 10^{3}, mathrm{J,kg^{-1},s^{-1}}$, an amount sufficient to account for observed departures from adiabatic expansion. Parker Solar Probe (PSP), even during its first solar encounter, offers the first opportunity to compute, in a similar fashion, a fluid-scale energy decay rate, much closer to the solar corona than any prior in-situ observations. Using the Politano-Pouquet third-order law and the von Karman decay law, we estimate the fluid-range energy transfer rate in the inner heliosphere, at heliocentric distance $R$ ranging from $54,R_{odot}$ (0.25 au) to $36,R_{odot}$ (0.17 au). The energy transfer rate obtained near the first perihelion is about 100 times higher than the average value at 1 au. This dramatic increase in the heating rate is unprecedented in previous solar wind observations, including those from Helios, and the values are close to those obtained in the shocked plasma inside the terrestrial magnetosheath.
Using in situ data, accumulated in the turbulent magnetosheath by the Magnetospheric Multiscale (MMS) Mission, we report a statistical study of magnetic field curvature and discuss its role in the turbulent space plasmas. Consistent with previous sim ulation results, the Probability Distribution Function (PDF) of the curvature is shown to have distinct power-law tails for both high and low value limits. We find that the magnetic-field-line curvature is intermittently distributed in space. High curvature values reside near weak magnetic-field regions, while low curvature values are correlated with small magnitude of the force acting normal to the field lines. A simple statistical treatment provides an explanation for the observed curvature distribution. This novel statistical characterization of magnetic curvature in space plasma provides a starting point for assessing, in a turbulence context, the applicability and impact of particle energization processes, such as curvature drift, that rely on this fundamental quantity.
How turbulent energy is dissipated in weakly collisional space and astrophysical plasmas is a major open question. Here, we present the application of a field-particle correlation technique to directly measure the transfer of energy between the turbu lent electromagnetic field and electrons in the Earths magnetosheath, the region of solar wind downstream of the Earths bow shock. The measurement of the secular energy transfer from the parallel electric field as a function of electron velocity shows a signature consistent with Landau damping. This signature is coherent over time, close to the predicted resonant velocity, similar to that seen in kinetic Alfven turbulence simulations, and disappears under phase randomisation. This suggests that electron Landau damping could play a significant role in turbulent plasma heating, and that the technique is a valuable tool for determining the particle energisation processes operating in space and astrophysical plasmas.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا