ﻻ يوجد ملخص باللغة العربية
Using in situ data, accumulated in the turbulent magnetosheath by the Magnetospheric Multiscale (MMS) Mission, we report a statistical study of magnetic field curvature and discuss its role in the turbulent space plasmas. Consistent with previous simulation results, the Probability Distribution Function (PDF) of the curvature is shown to have distinct power-law tails for both high and low value limits. We find that the magnetic-field-line curvature is intermittently distributed in space. High curvature values reside near weak magnetic-field regions, while low curvature values are correlated with small magnitude of the force acting normal to the field lines. A simple statistical treatment provides an explanation for the observed curvature distribution. This novel statistical characterization of magnetic curvature in space plasma provides a starting point for assessing, in a turbulence context, the applicability and impact of particle energization processes, such as curvature drift, that rely on this fundamental quantity.
Magnetic field are transported and tangled by turbulence, even as they lose identity due to nonideal or resistive effects. On balance field lines undergo stretch-twist-fold processes. The curvature field, a scalar that measures the tangling of the ma
Both kinetic instabilities and strong turbulence have potential to impact the behavior of space plasmas. To assess effects of these two processes we compare results from a 3 dimensional particle-in-cell (PIC) simulation of collisionless plasma turbul
An innovative field-particle correlation technique is proposed that uses single-point measurements of the electromagnetic fields and particle velocity distribution functions to investigate the net transfer of energy from fields to particles associate
We report the observations of an electron vortex magnetic hole corresponding to a new type of coherent structures in the magnetosheath turbulent plasma using the Magnetospheric Multiscale (MMS) mission data. The magnetic hole is characterized by a ma
We study magnetic reconnection events in a turbulent plasma within the two-fluid theory. By identifying the diffusive regions, we measure the reconnection rates as function of the conductivity and current sheet thickness. We have found that the recon