ﻻ يوجد ملخص باللغة العربية
In this paper, the problem of unmanned aerial vehicle (UAV) deployment, power allocation, and bandwidth allocation is investigated for a UAV-assisted wireless system operating at terahertz (THz) frequencies. In the studied model, one UAV can service ground users using the THz frequency band. However, the highly uncertain THz channel will introduce new challenges to the UAV location, user power, and bandwidth allocation optimization problems. Therefore, it is necessary to design a novel framework to deploy UAVs in the THz wireless systems. This problem is formally posed as an optimization problem whose goal is to minimize the total delays of the uplink and downlink transmissions between the UAV and the ground users by jointly optimizing the deployment of the UAV, the transmit power and the bandwidth of each user. The communication delay is crucial for emergency communications. To tackle this nonconvex delay minimization problem, an alternating algorithm is proposed while iteratively solving three subproblems: location optimization subproblem, power control subproblem, and bandwidth allocation subproblem. Simulation results show that the proposed algorithm can reduce the transmission delay by up to $59.3%$, $49.8%$ and $75.5%$ respectively compared to baseline algorithms that optimize only UAV location, bandwidth allocation or transmit power control.
In this letter, we study multiuser communication systems enabled by an unmanned aerial vehicle (UAV) that is equipped with a directional antenna of adjustable beamwidth. We propose a fly-hover-and-communicate protocol where the ground terminals (GTs)
This paper jointly optimizes the flying location and wireless communication transmit power for an unmanned aerial vehicle (UAV) conducting covert operations. This is motivated by application scenarios such as military ground surveillance from airborn
Wireless communication enabled by unmanned aerial vehicles (UAVs) has emerged as an appealing technology for many application scenarios in future wireless systems. However, the limited endurance of UAVs greatly hinders the practical implementation of
This paper studies an unmanned aerial vehicle (UAV)-enabled multicasting system, where a UAV is dispatched to disseminate a common file to a number of geographically distributed ground terminals (GTs). Our objective is to design the UAV trajectory to
This letter considers an unmanned aerial vehicle (UAV)-enabled relay communication system for delivering latency-critical messages with ultra-high reliability, where the relay is operating under amplifier-and-forward (AF) mode. We aim to jointly opti