ترغب بنشر مسار تعليمي؟ اضغط هنا

QUBIC V: Cryogenic system design and performance

81   0   0.0 ( 0 )
 نشر من قبل Silvia Masi
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Current experiments aimed at measuring the polarization of the Cosmic Microwave Background (CMB) use cryogenic detector arrays and cold optical systems to boost the mapping speed of the sky survey. For these reasons, large volume cryogenic systems, with large optical windows, working continuously for years, are needed. Here we report on the cryogenic system of the QUBIC (Q and U Bolometric Interferometer for Cosmology) experiment: we describe its design, fabrication, experimental optimization and validation in the Technological Demonstrator configuration. The QUBIC cryogenic system is based on a large volume cryostat, using two pulse-tube refrigerators to cool at ~3K a large (~1 m^3) volume, heavy (~165kg) instrument, including the cryogenic polarization modulator, the corrugated feedhorns array, and the lower temperature stages; a 4He evaporator cooling at ~1K the interferometer beam combiner; a 3He evaporator cooling at ~0.3K the focal-plane detector arrays. The cryogenic system has been tested and validated for more than 6 months of continuous operation. The detector arrays have reached a stable operating temperature of 0.33K, while the polarization modulator has been operated from a ~10K base temperature. The system has been tilted to cover the boresight elevation range 20 deg -90 deg without significant temperature variations. The instrument is now ready for deployment to the high Argentinean Andes.



قيم البحث

اقرأ أيضاً

74 - A.J. May , C. Chapron , G. Coppi 2018
QUBIC, the QU Bolometric Interferometer for Cosmology, is a novel forthcoming instrument to measure the B-mode polarization anisotropy of the Cosmic Microwave Background. The detection of the B-mode signal will be extremely challenging; QUBIC has bee n designed to address this with a novel approach, namely bolometric interferometry. The receiver cryostat is exceptionally large and cools complex optical and detector stages to 40 K, 4 K, 1 K and 350 mK using two pulse tube coolers, a novel 4He sorption cooler and a double-stage 3He/4He sorption cooler. We discuss the thermal and mechanical design of the cryostat, modelling and thermal analysis, and laboratory cryogenic testing.
The Q and U Bolometric Interferometer for Cosmology (QUBIC) is a ground-based experiment that aims to detect B-mode polarisation anisotropies in the CMB at angular scales around the l=100 recombination peak. Systematic errors make ground-based observ ations of B modes at millimetre wavelengths very challenging and QUBIC mitigates these problems in a somewhat complementary way to other existing or planned experiments using the novel technique of bolometric interferometry. This technique takes advantage of the sensitivity of an imager and the systematic error control of an interferometer. A cold reflective optical combiner superimposes there-emitted beams from 400 aperture feedhorns on two focal planes. A shielding system composedof a fixed groundshield, and a forebaffle that moves with the instrument, limits the impact of local contaminants. The modelling, design, manufacturing and preliminary measurements of the optical components are described in this paper.
Inflation Gravity Waves B-Modes polarization detection is the ultimate goal of modern large angular scale cosmic microwave background (CMB) experiments around the world. A big effort is undergoing with the deployment of many ground-based, balloon-bor ne and satellite experiments using different methods to separate this faint polarized component from the incoming radiation. One of the largely used technique is the Stokes Polarimetry that uses a rotating half-wave plate (HWP) and a linear polarizer to separate and modulate the polarization components with low residual cross-polarization. This paper describes the QUBIC Stokes Polarimeter highlighting its design features and its performances. A common systematic with these devices is the generation of large spurious signals synchronous with the rotation and proportional to the emissivity of the optical elements. A key feature of the QUBIC Stokes Polarimeter is to operate at cryogenic temperature in order to minimize this unwanted component. Moving efficiently this large optical element at low temperature constitutes a big engineering challenge in order to reduce friction power dissipation. Big attention has been given during the designing phase to minimize the differential thermal contractions between parts. The rotation is driven by a stepper motor placed outside the cryostat to avoid thermal load dissipation at cryogenic temperature. The tests and the results presented in this work show that the QUBIC polarimeter can easily achieve a precision below 0.1{deg} in positioning simply using the stepper motor precision and the optical absolute encoder. The rotation induces only few mK of extra power load on the second cryogenic stage (~ 8 K).
We present the design, manufacturing and performance of the horn-switch system developed for the technological demonstrator of QUBIC (the $Q$&$U$ Bolometric Interferometer for Cosmology). This system is constituted of 64 back-to-back dual-band (150,G Hz and 220,GHz) corrugated feed-horns interspersed with mechanical switches used to select desired baselines during the instrument self-calibration. We manufactured the horns in aluminum platelets milled by photo-chemical etching and mechanically tightened with screws. The switches are based on steel blades that open and close the wave-guide between the back-to-back horns and are operated by miniaturized electromagnets. We also show the current development status of the feedhorn-switch system for the QUBIC full instrument, based on an array of 400 horn-switch assemblies.
We developed a system that continuously maintains a cryocooler for long periods on a rotating table. A cryostat that holds the cryocooler is set on the table. A compressor is located on the ground and supplies high-purity (> 99.999%) and high-pressur e (1.7 MPa) helium gas and electricity to the cryocooler. The operation of the cryocooler and other instruments requires the development of interface components between the ground and rotating table. A combination of access holes at the center of the table and two rotary joints allows simultaneous circulation of electricity and helium gas. The developed system provides two innovative functions under the rotating condition; cooling from room temperature and the maintenance of a cold condition for long periods. We have confirmed these abilities as well as temperature stability under a condition of continuous rotation at 20 revolutions per minute. The developed system can be applied in various fields; e.g., in tests of Lorentz invariance, searches for axion, radio astronomy and cosmology, and application of radar systems. In particular, there is a plan to use this system for a radio telescope observing cosmic microwave background radiation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا