ﻻ يوجد ملخص باللغة العربية
In this work, we attempt to answer a critical question: whether there exists some input sequence that will cause a well-trained discrete-space neural network sequence-to-sequence (seq2seq) model to generate egregious outputs (aggressive, malicious, attacking, etc.). And if such inputs exist, how to find them efficiently. We adopt an empirical methodology, in which we first create lists of egregious output sequences, and then design a discrete optimization algorithm to find input sequences that will cause the model to generate them. Moreover, the optimization algorithm is enhanced for large vocabulary search and constrained to search for input sequences that are likely to be input by real-world users. In our experiments, we apply this approach to dialogue response generation models trained on three real-world dialogue data-sets: Ubuntu, Switchboard and OpenSubtitles, testing whether the model can generate malicious responses. We demonstrate that given the trigger inputs our algorithm finds, a significant number of malicious sentences are assigned large probability by the model, which reveals an undesirable consequence of standard seq2seq training.
Sequence-to-sequence models are a powerful workhorse of NLP. Most variants employ a softmax transformation in both their attention mechanism and output layer, leading to dense alignments and strictly positive output probabilities. This density is was
Neural sequence models are widely used to model time-series data. Equally ubiquitous is the usage of beam search (BS) as an approximate inference algorithm to decode output sequences from these models. BS explores the search space in a greedy left-ri
Human reasoning can often be understood as an interplay between two systems: the intuitive and associative (System 1) and the deliberative and logical (System 2). Neural sequence models -- which have been increasingly successful at performing complex
In many machine learning scenarios, supervision by gold labels is not available and consequently neural models cannot be trained directly by maximum likelihood estimation (MLE). In a weak supervision scenario, metric-augmented objectives can be emplo
Acoustic-to-Word recognition provides a straightforward solution to end-to-end speech recognition without needing external decoding, language model re-scoring or lexicon. While character-based models offer a natural solution to the out-of-vocabulary