ترغب بنشر مسار تعليمي؟ اضغط هنا

The origin of polarization in kilonovae and the case of the gravitational-wave counterpart AT 2017gfo

98   0   0.0 ( 0 )
 نشر من قبل Mattia Bulla Dr
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Gravitational Wave (GW) event GW 170817 was generated by the coalescence of two neutron stars (NS) and produced an electromagnetic transient, labelled AT 2017gfo, that was target of a massive observational campaign. Polarimetry, a powerful diagnostic tool for probing the geometry and emission processes of unresolved sources, was obtained for this event. The observed linear polarization was consistent with being mostly induced by intervening dust, suggesting that the intrinsic emission was weakly polarized ($P < 0.4-0.5$ %). In this paper, we present and discuss a detailed analysis of the linear polarization expected from a merging NS binary system by means of 3D Monte Carlo radiative transfer simulations assuming a range of possible configurations, wavelengths, epochs and viewing angles. We find that polarization originates from the non-homogeneous opacity distribution within the ejecta and can reach levels of $Psim1$ % at early times (1$-$2 days after the merger) and in the optical R band. Smaller polarization signals are expected at later epochs and/or different wavelengths. From the viewing-angle dependence of the polarimetric signal, we constrain the observer orientation of AT 2017gfo within $sim$65$^circ$ from the polar direction. The detection of non-zero polarization in future events will unambiguously reveal the presence of a lanthanide-free ejecta component and unveil its spatial and angular distribution.

قيم البحث

اقرأ أيضاً

During the second observing run of the Laser Interferometer gravitational- wave Observatory (LIGO) and Virgo Interferometer, a gravitational-wave signal consistent with a binary neutron star coalescence was detected on 2017 August 17th (GW170817), qu ickly followed by a coincident short gamma-ray burst trigger by the Fermi satellite. The Distance Less Than 40 (DLT40) Mpc supernova search performed pointed follow-up observations of a sample of galaxies regularly monitored by the survey which fell within the combined LIGO+Virgo localization region, and the larger Fermi gamma ray burst error box. Here we report the discovery of a new optical transient (DLT17ck, also known as SSS17a; it has also been registered as AT 2017gfo) spatially and temporally coincident with GW170817. The photometric and spectroscopic evolution of DLT17ck are unique, with an absolute peak magnitude of Mr = -15.8 pm 0.1 and an r-band decline rate of 1.1mag/d. This fast evolution is generically consistent with kilonova models, which have been predicted as the optical counterpart to binary neutron star coalescences. Analysis of archival DLT40 data do not show any sign of transient activity at the location of DLT17ck down to r~19 mag in the time period between 8 months and 21 days prior to GW170817. This discovery represents the beginning of a new era for multi-messenger astronomy opening a new path to study and understand binary neutron star coalescences, short gamma-ray bursts and their optical counterparts.
We report on SALT low resolution optical spectroscopy and optical/IR photometry undertaken with other SAAO telescopes (MASTER-SAAO and IRSF) of the kilonova AT 2017gfo (aka SSS17a) in the galaxy NGC4993 during the first 10 days of discovery. This eve nt has been identified as the first ever electromagnetic counterpart of a gravitational wave event, namely GW170817, which was detected by the LIGO and Virgo gravitational wave observatories. The event is likely due to a merger of two neutron stars, resulting in a kilonova explosion. SALT was the third telescope to obtain spectroscopy of AT 2017gfo and the first spectrum, 1.2 d after the merger, is quite blue and shows some broad features, but no identifiable spectral lines and becomes redder over time. We compare the spectral and photometric evolution with recent kilonova simulations and conclude that they are in qualitative agreement for post-merger wind models with proton: nucleon ratios of $Y_e$ = 0.25$-$0.30. The blue colour of the first spectrum is consistent with the lower opacity of the Lathanide-free r-process elements in the ejecta. Differences between the models and observations are likely due to the choice of system parameters combined with the absence of atomic data for more elements in the ejecta models.
We present the spectroscopic evolution of AT 2017gfo, the optical counterpart of the first binary neutron star (BNS) merger detected by LIGO and Virgo, GW170817. While models have long predicted that a BNS merger could produce a kilonova (KN), we hav e not been able to definitively test these models until now. From one day to four days after the merger, we took five spectra of AT 2017gfo before it faded away, which was possible because it was at a distance of only 39.5 Mpc in the galaxy NGC 4993. The spectra evolve from blue ($sim6400$K) to red ($sim3500$K) over the three days we observed. The spectra are relatively featureless --- some weak features exist in our latest spectrum, but they are likely due to the host galaxy. However, a simple blackbody is not sufficient to explain our data: another source of luminosity or opacity is necessary. Predictions from simulations of KNe qualitatively match the observed spectroscopic evolution after two days past the merger, but underpredict the blue flux in our earliest spectrum. From our best-fit models, we infer that AT 2017gfo had an ejecta mass of $0.03M_odot$, high ejecta velocities of $0.3c$, and a low mass fraction $sim10^{-4}$ of high-opacity lanthanides and actinides. One possible explanation for the early excess of blue flux is that the outer ejecta is lanthanide-poor, while the inner ejecta has a higher abundance of high-opacity material. With the discovery and follow-up of this unique transient, combining gravitational-wave and electromagnetic astronomy, we have arrived in the multi-messenger era.
We discovered Swope Supernova Survey 2017a (SSS17a) in the LIGO/Virgo Collaboration (LVC) localization volume of GW170817, the first detected binary neutron star (BNS) merger, only 10.9 hours after the trigger. No object was present at the location o f SSS17a only a few days earlier, providing a qualitative spatial and temporal association with GW170817. Here we quantify this association, finding that SSS17a is almost certainly the counterpart of GW170817, with the chance of a coincidence being < 9 x 10^-6 (90% confidence). We arrive at this conclusion by comparing the optical properties of SSS17a to other known astrophysical transients, finding that SSS17a fades and cools faster than any other observed transient. For instance, SSS17a fades >5 mag in g within 7 days of our first data point while all other known transients of similar luminosity fade by <1 mag during the same time period. Its spectra are also unique, being mostly featureless, even as it cools. The rarity of SSS17a-like transients combined with the relatively small LVC localization volume and recent non-detection imply the extremely unlikely chance coincidence. We find that the volumetric rate of SSS17a-like transients is < 1.6 x 10^4 Gpc^-3 year^-1 and the Milky Way rate is <0.19 per century. A transient survey designed to discover similar events should be high cadence and observe in red filters. The LVC will likely detect substantially more BNS mergers than current optical surveys will independently discover SSS17a-like transients, however a 1-day cadence survey with LSST could discover an order of magnitude more events.
130 - E. Troja , L. Piro , H. van Eerten 2017
A long-standing paradigm in astrophysics is that collisions- or mergers- of two neutron stars (NSs) form highly relativistic and collimated outflows (jets) powering gamma-ray bursts (GRBs) of short (< 2 s) duration. However, the observational support for this model is only indirect. A hitherto outstanding prediction is that gravitational wave (GW) events from such mergers should be associated with GRBs, and that a majority of these GRBs should be off-axis, that is, they should point away from the Earth. Here we report the discovery of the X-ray counterpart associated with the GW event GW170817. While the electromagnetic counterpart at optical and infrared frequencies is dominated by the radioactive glow from freshly synthesized r-process material in the merger ejecta, known as kilonova, observations at X-ray and, later, radio frequencies exhibit the behavior of a short GRB viewed off-axis. Our detection of X-ray emission at a location coincident with the kilonova transient provides the missing observational link between short GRBs and GWs from NS mergers, and gives independent confirmation of the collimated nature of the GRB emission.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا