ترغب بنشر مسار تعليمي؟ اضغط هنا

Partial hyperbolicity far from homoclinic bifurcations

184   0   0.0 ( 0 )
 نشر من قبل Sylvain Crovisier
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English
 تأليف Sylvain Crovisier




اسأل ChatGPT حول البحث

We prove that any diffeomorphism of a compact manifold can be C^1-approximated by a diffeomorphism which exhibits a homoclinic bifurcation (a homoclinic tangency or a heterodimensional cycle) or by a diffeomorphism which is partially hyperbolic (its chain-recurrent set splits into partially hyperbolic pieces whose centre bundles have dimensions less or equal to two). We also study in a more systematic way the central models introduced in arXiv:math/0605387.



قيم البحث

اقرأ أيضاً

In this article we construct the parameter region where the existence of a homoclinic orbit to a zero equilibrium state of saddle type in the Lorenz-like system will be analytically proved in the case of a nonnegative saddle value. Then, for a qualit ative description of the different types of homoclinic bifurcations, a numerical analysis of the detected parameter region is carried out to discover several new interesting bifurcation scenarios.
We initiate a parametric study of holomorphic families of polynomial skew products, i.e., polynomial endomorphisms of $mathbb{C}^2$ of the form $F(z,w)= (p(z), q(z,w))$ that extend to holomorphic endomorphisms of $mathbb{P}^2(mathbb{C})$. We prove th at dynamical stability in the sense of arXiv:1403.7603 preserves hyperbolicity within such families, and give a complete classification of the hyperbolic components that are the analogue, in this setting, of the complement of the Mandelbrot set for the family $z^2 +c$. We also precisely describe the geometry of the bifurcation locus and current near the boundary of the parameter space. One of our tools is an asymptotic equidistribution property for the bifurcation current. This is established in the general setting of families of endomorphisms of $mathbb{P}^k$ and is the first equidistribution result of this kind for holomorphic dynamical systems in dimension larger than one.
Global resonance is a mechanism by which a homoclinic tangency of a smooth map can have infinitely many asymptotically stable, single-round periodic solutions. To understand the bifurcation structure one would expect to see near such a tangency, in t his paper we study one-parameter perturbations of typical globally resonant homoclinic tangencies. We assume the tangencies are formed by the stable and unstable manifolds of saddle fixed points of two-dimensional maps. We show the perturbations display two infinite sequences of bifurcations, one saddle-node the other period-doubling, between which single-round periodic solutions are asymptotically stable. Generically these scale like $|lambda|^{2 k}$, as $k to infty$, where $-1 < lambda < 1$ is the stable eigenvalue associated with the fixed point. If the perturbation is taken tangent to the surface of codimension-one homoclinic tangencies, they instead scale like $frac{|lambda|^k}{k}$. We also show slower scaling laws are possible if the perturbation admits further degeneracies.
We prove that every sectional-hyperbolic Lyapunov stable set contains a nontrivial homoclinic class.
There are few examples of non-autonomous vector fields exhibiting complex dynamics that may be proven analytically. We analyse a family of periodic perturbations of a weakly attracting robust heteroclinic network defined on the two-sphere. We derive the first return map near the heteroclinic cycle for small amplitude of the perturbing term, and we reduce the analysis of the non-autonomous system to that of a two-dimensional map on a cylinder. Interesting dynamical features arise from a discrete-time Bogdanov-Takens bifurcation. When the perturbation strength is small the first return map has an attracting invariant closed curve that is not contractible on the cylinder. Near the centre of frequency locking there are parameter values with bistability: the invariant curve coexists with an attracting fixed point. Increasing the perturbation strength there are periodic solutions that bifurcate into a closed contractible invariant curve and into a region where the dynamics is conjugate to a full shift on two symbols.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا