ﻻ يوجد ملخص باللغة العربية
The next generation of cryogenic CMB and submillimeter cameras under development require densely instrumented sensor arrays to meet their science goals. The readout of large numbers ($sim$10,000--100,000 per camera) of sub-Kelvin sensors, for instance as proposed for the CMB-S4 experiment, will require substantial improvements in cold and warm readout techniques. To reduce the readout cost per sensor and integration complexity, efforts are presently focused on achieving higher multiplexing density while maintaining readout noise subdominant to intrinsic detector noise. Highly-multiplexed cold readout technologies in active development include Microwave Kinetic Inductance Sensors (MKIDs) and microwave rf-SQUIDs. Both exploit the high quality factors of superconducting microwave resonators to densely channelize sub-Kelvin sensors into the bandwidth of a microwave transmission line. We present advancements in the development of a new warm readout system for microwave SQUID multiplexing, the SLAC Superconducting Microresonator RF electronics, or SMuRF. The SMuRF system is unique in its ability to track each tone, minimizing the total RF power required to read out each resonator, thereby significantly reducing the linearity requirements on the cold and warm readout. Here, we present measurements of the readout noise and linearity of the first full SMuRF system, including a demonstration of closed-loop tone tracking on a 528 channel cryogenic microwave SQUID multiplexer. SMuRF is being explored as a potential readout solution for several future CMB projects including Simons Observatory, BICEP Array, CCAT-prime, Ali-CPT, and CMB-S4. Parallel development of the platform is underway to adapt SMuRF to read out both MKID and fast X-ray TES calorimeter arrays.
Large arrays of cryogenic sensors for various imaging applications ranging across x-ray, gamma-ray, Cosmic Microwave Background (CMB), mm/sub-mm, as well as particle detection increasingly rely on superconducting microresonators for high multiplexing
A technological milestone for experiments employing Transition Edge Sensor (TES) bolometers operating at sub-kelvin temperature is the deployment of detector arrays with 100s--1000s of bolometers. One key technology for such arrays is readout multipl
Microwave Kinetic Inductance Detectors (MKID) are a promising solution for spaceborne mm-wave astronomy. To optimize their design and make them insensitive to the ballistic phonons created by cosmic-ray interactions in the substrate, the phonon propa
Frequency domain multiplexing (fMux) is an established technique for the readout of transition-edge sensor (TES) bolometers in millimeter-wavelength astrophysical instrumentation. In fMux, the signals from multiple detectors are read out on a single
The third generation South Pole Telescope camera (SPT-3G) improves upon its predecessor (SPTpol) by an order of magnitude increase in detectors on the focal plane. The technology used to read out and control these detectors, digital frequency-domain