ﻻ يوجد ملخص باللغة العربية
This paper presents the conceptual design of a high-voltage pulser intended to generate 30-T magnetic fields for magneto-inertial fusion experiments at the OMEGA facility. The pulser uses a custom capacitor bank and two externally triggered spark gaps to drive a multi-turn coil. This new high-voltage pulser is capable of storing 10 times more energy than the previous system, using a higher charge voltage (from 20 to 30 kV) and a larger capacitance (from 1 {mu}F to 5 {mu}F). Circuit simulations show that this pulser can deliver 100 kA into a 60-nH, 14-m{Omega} coil with a rise time of 1 {mu}s. For a coil with 2 turns with an average coil diameter of 7.8 mm, this current translates into a 32-T peak magnetic field at coil center. This is a factor of three increase in the peak magnetic field compared to the present generator magnetic field capabilities.
We calculate the Thomson scattering cross section in a non-relativistic, magnetized, high density plasma -- in a regime where collective excitations can be described by magnetohydrodynamics. We show that, in addition to cyclotron resonances and an el
A conceptual design is presented of a novel ERL facility for the development and application of the energy recovery technique to linear electron accelerators in the multi-turn, large current and large energy regime. The main characteristics of the po
A design study of the diagnostics of a high brightness linac, based on X-band structures, and a plasma accelerator stage, has been delivered in the framework of the EuPRAXIA@SPARC_LAB project. In this paper, we present a conceptual design of the prop
The quest for the inertial confinement fusion (ICF) ignition is a grand challenge, as exemplified by extraordinary large laser facilities. Fast isochoric heating of a pre-compressed plasma core with a high-intensity short-pulse laser is an attractive
Three-dimensional FLASH radiation-magnetohydrodynamics (radiation-MHD) modeling is carried out to study the hydrodynamics and magnetic fields in the shock-shear derived platform. Simulations indicate that fields of tens of Tesla can be generated via