ﻻ يوجد ملخص باللغة العربية
Connected and automated vehicles (CAVs) have the potential to address the safety, mobility and sustainability issues of our current transportation systems. Cooperative adaptive cruise control (CACC), for example, is one promising technology to allow CAVs to be driven in a cooperative manner and introduces system-wide benefits. In this paper, we review the progress achieved by researchers worldwide regarding different aspects of CACC systems. Literature of CACC system architectures are reviewed, which explain how this system works from a higher level. Different control methodologies and their related issues are reviewed to introduce CACC systems from a lower level. Applications of CACC technology are demonstrated with detailed literature, which draw an overall landscape of CACC, point out current opportunities and challenges, and anticipate its development in the near future.
The paper evaluates the influence of the maximum vehicle acceleration and variable proportions of ACC/CACC vehicles on the throughput of an intersection. Two cases are studied: (1) free road downstream of the intersection; and (2) red light at some d
To properly assess the impact of (cooperative) adaptive cruise control ACC (CACC), one has to model vehicle dynamics. First of all, one has to choose the car following model, as it determines the vehicle flow as vehicles accelerate from standstill or
Emergent cooperative adaptive cruise control (CACC) strategies being proposed in the literature for platoon formation in the Connected Autonomous Vehicle (CAV) context mostly assume idealized fixed information flow topologies (IFTs) for the platoon,
Vehicle-to-vehicle communications can be unreliable as interference causes communication failures. Thereby, the information flow topology for a platoon of Connected Autonomous Vehicles (CAVs) can vary dynamically. This limits existing Cooperative Ada
This paper is about obtaining stable vehicle platooning by using Cooperative Adaptive Cruise Control when the communication is unreliable and suffers from message losses. We model communication losses as independent random events and we propose an or