ترغب بنشر مسار تعليمي؟ اضغط هنا

Representing Images in 200 Bytes: Compression via Triangulation

38   0   0.0 ( 0 )
 نشر من قبل Michele Covell
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

A rapidly increasing portion of internet traffic is dominated by requests from mobile devices with limited and metered bandwidth constraints. To satisfy these requests, it has become standard practice for websites to transmit small and extremely compressed image previews as part of the initial page load process to improve responsiveness. Increasing thumbnail compression beyond the capabilities of existing codecs is therefore an active research direction. In this work, we concentrate on extreme compression rates, where the size of the image is typically 200 bytes or less. First, we propose a novel approach for image compression that, unlike commonly used methods, does not rely on block-based statistics. We use an approach based on an adaptive triangulation of the target image, devoting more triangles to high entropy regions of the image. Second, we present a novel algorithm for encoding the triangles. The results show favorable statistics, in terms of PSNR and SSIM, over both the JPEG and the WebP standards.



قيم البحث

اقرأ أيضاً

188 - Yixing Zhu , Xueqing Wu , Jun Du 2019
We propose a novel method for representing oriented objects in aerial images named Adaptive Period Embedding (APE). While traditional object detection methods represent object with horizontal bounding boxes, the objects in aerial images are oritented . Calculating the angle of object is an yet challenging task. While almost all previous object detectors for aerial images directly regress the angle of objects, they use complex rules to calculate the angle, and their performance is limited by the rule design. In contrast, our method is based on the angular periodicity of oriented objects. The angle is represented by two two-dimensional periodic vectors whose periods are different, the vector is continuous as shape changes. The label generation rule is more simple and reasonable compared with previous methods. The proposed method is general and can be applied to other oriented detector. Besides, we propose a novel IoU calculation method for long objects named length independent IoU (LIIoU). We intercept part of the long side of the target box to get the maximum IoU between the proposed box and the intercepted target box. Thereby, some long boxes will have corresponding positive samples. Our method reaches the 1st place of DOAI2019 competition task1 (oriented object) held in workshop on Detecting Objects in Aerial Images in conjunction with IEEE CVPR 2019.
Estimating 3D human poses from video is a challenging problem. The lack of 3D human pose annotations is a major obstacle for supervised training and for generalization to unseen datasets. In this work, we address this problem by proposing a weakly-su pervised training scheme that does not require 3D annotations or calibrated cameras. The proposed method relies on temporal information and triangulation. Using 2D poses from multiple views as the input, we first estimate the relative camera orientations and then generate 3D poses via triangulation. The triangulation is only applied to the views with high 2D human joint confidence. The generated 3D poses are then used to train a recurrent lifting network (RLN) that estimates 3D poses from 2D poses. We further apply a multi-view re-projection loss to the estimated 3D poses and enforce the 3D poses estimated from multi-views to be consistent. Therefore, our method relaxes the constraints in practice, only multi-view videos are required for training, and is thus convenient for in-the-wild settings. At inference, RLN merely requires single-view videos. The proposed method outperforms previous works on two challenging datasets, Human3.6M and MPI-INF-3DHP. Codes and pretrained models will be publicly available.
Channel pruning and tensor decomposition have received extensive attention in convolutional neural network compression. However, these two techniques are traditionally deployed in an isolated manner, leading to significant accuracy drop when pursuing high compression rates. In this paper, we propose a Collaborative Compression (CC) scheme, which joints channel pruning and tensor decomposition to compress CNN models by simultaneously learning the model sparsity and low-rankness. Specifically, we first investigate the compression sensitivity of each layer in the network, and then propose a Global Compression Rate Optimization that transforms the decision problem of compression rate into an optimization problem. After that, we propose multi-step heuristic compression to remove redundant compression units step-by-step, which fully considers the effect of the remaining compression space (i.e., unremoved compression units). Our method demonstrates superior performance gains over previous ones on various datasets and backbone architectures. For example, we achieve 52.9% FLOPs reduction by removing 48.4% parameters on ResNet-50 with only a Top-1 accuracy drop of 0.56% on ImageNet 2012.
115 - Bo Peng , Wenming Tan , Zheyang Li 2018
In this paper we propose a novel decomposition method based on filter group approximation, which can significantly reduce the redundancy of deep convolutional neural networks (CNNs) while maintaining the majority of feature representation. Unlike oth er low-rank decomposition algorithms which operate on spatial or channel dimension of filters, our proposed method mainly focuses on exploiting the filter group structure for each layer. For several commonly used CNN models, including VGG and ResNet, our method can reduce over 80% floating-point operations (FLOPs) with less accuracy drop than state-of-the-art methods on various image classification datasets. Besides, experiments demonstrate that our method is conducive to alleviating degeneracy of the compressed network, which hurts the convergence and performance of the network.
We present two novel solutions for multi-view 3D human pose estimation based on new learnable triangulation methods that combine 3D information from multiple 2D views. The first (baseline) solution is a basic differentiable algebraic triangulation wi th an addition of confidence weights estimated from the input images. The second solution is based on a novel method of volumetric aggregation from intermediate 2D backbone feature maps. The aggregated volume is then refined via 3D convolutions that produce final 3D joint heatmaps and allow modelling a human pose prior. Crucially, both approaches are end-to-end differentiable, which allows us to directly optimize the target metric. We demonstrate transferability of the solutions across datasets and considerably improve the multi-view state of the art on the Human3.6M dataset. Video demonstration, annotations and additional materials will be posted on our project page (https://saic-violet.github.io/learnable-triangulation).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا