ﻻ يوجد ملخص باللغة العربية
In this paper we propose a novel decomposition method based on filter group approximation, which can significantly reduce the redundancy of deep convolutional neural networks (CNNs) while maintaining the majority of feature representation. Unlike other low-rank decomposition algorithms which operate on spatial or channel dimension of filters, our proposed method mainly focuses on exploiting the filter group structure for each layer. For several commonly used CNN models, including VGG and ResNet, our method can reduce over 80% floating-point operations (FLOPs) with less accuracy drop than state-of-the-art methods on various image classification datasets. Besides, experiments demonstrate that our method is conducive to alleviating degeneracy of the compressed network, which hurts the convergence and performance of the network.
Network compression has been widely studied since it is able to reduce the memory and computation cost during inference. However, previous methods seldom deal with complicated structures like residual connections, group/depth-wise convolution and fea
Training a classifier over a large number of classes, known as extreme classification, has become a topic of major interest with applications in technology, science, and e-commerce. Traditional softmax regression induces a gradient cost proportional
We present an efficient finetuning methodology for neural-network filters which are applied as a postprocessing artifact-removal step in video coding pipelines. The fine-tuning is performed at encoder side to adapt the neural network to the specific
Based on filter magnitude ranking (e.g. L1 norm), conventional filter pruning methods for Convolutional Neural Networks (CNNs) have been proved with great effectiveness in computation load reduction. Although effective, these methods are rarely analy
Despite their prevalence, deep networks are poorly understood. This is due, at least in part, to their highly parameterized nature. As such, while certain structures have been found to work better than others, the significance of a models unique stru