In this paper we define the so-called twisted Heisenberg superalgebras over the complex number field by adding derivations to Heisenberg superalgebras. We classify the fine gradings up to equivalence on twisted Heisenberg superalgebras and determine the Weyl groups of those gradings.
Suppose the ground field to be algebraically closed and of characteristic different from $2$ and $3$. All Heisenberg Lie superalgebras consist of two sup
Given a grading $Gamma: A=oplus_{gin G}A_g$ on a nonassociative algebra $A$ by an abelian group $G$, we have two subgroups of the group of automorphisms of $A$: the automorphisms that stabilize each homogeneous component $A_g$ (as a subspace) and the
automorphisms that permute the components. By the Weyl group of $Gamma$ we mean the quotient of the latter subgroup by the former. In the case of a Cartan decomposition of a semisimple complex Lie algebra, this is the automorphism group of the root system, i.e., the so-called extended Weyl group. A grading is called fine if it cannot be refined. We compute the Weyl groups of all fine gradings on matrix algebras, octonions and the Albert algebra over an algebraically closed field (of characteristic different from 2 in the case of the Albert algebra).
Known classification results allow us to find the number of (equivalence classes of) fine gradings on matrix algebras and on classical simple Lie algebras over an algebraically closed field $mathbb{F}$ (assuming $mathrm{char} mathbb{F} e 2$ in the Li
e case). The computation is easy for matrix algebras and especially for simple Lie algebras of type $B_r$ (the answer is just $r+1$), but involves counting orbits of certain finite groups in the case of Series $A$, $C$ and $D$. For $Xin{A,C,D}$, we determine the exact number of fine gradings, $N_X(r)$, on the simple Lie algebras of type $X_r$ with $rle 100$ as well as the asymptotic behaviour of the average, $hat N_X(r)$, for large $r$. In particular, we prove that there exist positive constants $b$ and $c$ such that $exp(br^{2/3})lehat N_X(r)leexp(cr^{2/3})$. The analogous average for matrix algebras $M_n(mathbb{F})$ is proved to be $aln n+O(1)$ where $a$ is an explicit constant depending on $mathrm{char} mathbb{F}$.
Suppose that the underlying field is of characteristic different from $2, 3$. In this paper we first prove that the so-called stem deformations of a free presentations of a finite-dimensional Lie superalgebra $L$ exhaust all the maximal stem extensio
ns of $L$, up to equivalence of extensions. Then we prove that multipliers and covers always exist for a Lie superalgebra and they are unique up to Lie superalgebra isomorphisms. Finally, we describe the multipliers, covers and maximal stem extensions of Heisenberg superalgebras of odd centers and model filiform Lie superalgebras.
We classify, up to isomorphism, gradings by abelian groups on nilpotent filiform Lie algebras of nonzero rank. In case of rank 0, we describe conditions to obtain non trivial $Z_k$-gradings.