ترغب بنشر مسار تعليمي؟ اضغط هنا

K2-264: A transiting multi-planet system in the Praesepe open cluster

97   0   0.0 ( 0 )
 نشر من قبل John Livingston
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Planet host stars with well-constrained ages provide a rare window to the time domain of planet formation and evolution. The NASA K2 mission has enabled the discovery of the vast majority of known planets transiting stars in clusters, providing a valuable sample of planets with known ages and radii. We present the discovery of two planets transiting K2-264, an M2 dwarf in the intermediate age (600-800 Myr) Praesepe open cluster (also known as the Beehive Cluster, M44, or NGC 2632), which was observed by K2 during Campaign 16. The planets have orbital periods of 5.8 and 19.7 days, and radii of $2.2 pm 0.2 $ and $2.7 pm 0.2$ $R_oplus$, respectively, and their equilibrium temperatures are $496 pm 10$ and $331 pm 7$ $K$, making this a system of two warm sub-Neptunes. When placed in the context of known planets orbiting field stars of similar mass to K2-264, these planets do not appear to have significantly inflated radii, as has previously been noted for some cluster planets. As the second known system of multiple planets transiting a star in a cluster, K2-264 should be valuable for testing theories of photoevaporation in systems of multiple planets. Follow-up observations with current near-infrared (NIR) spectrographs could yield planet mass measurements, which would provide information about the mean densities and compositions of small planets soon after photoevaporation is expected to have finished. Follow-up NIR transit observations using Spitzer or large ground-based telescopes could yield improved radius estimates, further enhancing the characterization of these interesting planets.



قيم البحث

اقرأ أيضاً

We present follow-up observations of the K2-133 multi-planet system. Previously, we announced that K2-133 contained three super-Earths orbiting an M1.5V host star - with tentative evidence of a fourth outer-planet orbiting at the edge of the temperat e zone. Here we report on the validation of the presence of the fourth planet, determining a radius of $1.73_{-0.13}^{+0.14}$ R$_{oplus}$. The four planets span the radius gap of the exoplanet population, meaning further follow-up would be worthwhile to obtain masses and test theories of the origin of the gap. In particular, the trend of increasing planetary radius with decreasing incident flux in the K2-133 system supports the claim that the gap is caused by photo-evaporation of exoplanet atmospheres. Finally, we note that K2-133 e orbits on the edge of the stars temperate zone, and that our radius measurement allows for the possibility that this is a rocky world. Additional mass measurements are required to confirm or refute this scenario.
181 - R. Alonso , C. Moutou , M. Endl 2014
We present the discovery of a candidate multiply-transiting system, the first one found in the CoRoT mission. Two transit-like features with periods of 5.11 and 11.76d are detected in the CoRoT light curve, around a main sequence K1V star of r=15.1. If the features are due to transiting planets around the same star, these would correspond to objects of 3.7$pm$0.4 and 5.0$pm$0.5 R_earth respectively. Several radial velocities serve to provide an upper limit of 5.7 M_earth for the 5.11~d signal, and to tentatively measure a mass of 28$^{+11}_{-11}$ M_earth for the object transiting with a 11.76~d period. These measurements imply low density objects, with a significant gaseous envelope. The detailed analysis of the photometric and spectroscopic data serve to estimate the probability that the observations are caused by transiting Neptune-sized planets as $>$26$times$ higher than a blend scenario involving only one transiting planet, and $>$900$times$ higher than a scenario involving two blends and no planets. The radial velocities show a long term modulation that might be attributed to a 1.5 M_jup planet orbiting at 1.8~A.U. from the host, but more data are required to determine the precise orbital parameters of this companion.
Context: We present the transit and follow-up of a single transit event from Campaign 14 of K2, EPIC248847494b, which has a duration of 54 hours and a 0.18% depth. Aims: Using photometric tools and conducting radial velocity follow-up, we vet and cha racterise this very strong candidate. Methods: Owing to the long, unknown period, standard follow-up methods needed to be adapted. The transit was fitted using Namaste, and the radial velocity slope was measured and compared to a grid of planet-like orbits with varying masses and periods. These used stellar parameters measured from spectra and the distance as measured by Gaia. Results: Orbiting around a sub-giant star with a radius of 2.70$pm$0.12R$_{rm Sol}$, the planet has a radius of 1.11$_{-0.07}^{+0.07}$R$_{rm Jup}$ and a period of 3650$_{-1130}^{+1280}$ days. The radial velocity measurements constrain the mass to be lower than 13M$_{rm Jup}$, which implies a planet-like object. Conclusions: We have found a planet at 4.5 AU from a single-transit event. After a full radial velocity follow-up campaign, if confirmed, it will be the longest-period transiting planet discovered.
We report the discovery of a repeating photometric signal from a low-mass member of the Praesepe open cluster that we interpret as a Neptune-sized transiting planet. The star is JS 183 (HSHJ 163, EPIC 211916756) with $T_{rm eff} = 3325pm100$ K, $M_{* } = 0.44pm0.04$ $M_{odot}$, $R_{*} = 0.44pm0.03$ $R_{odot}$, and $log{g_*} = 4.82pm0.06$. The planet has an orbital period of 10.134588 days and a radius of $R_{P}= 0.32pm0.02$ $R_J$. Since the star is faint at $V=16.5$ and $J=13.3$, we are unable to obtain a measured radial-velocity orbit, but we can constrain the companion mass to below about 1.7 $M_J$, and thus well below the planetary boundary. JS 183b (since designated as K2-95b) is the second transiting planet found with ${it K2}$ that resides in a several hundred Myr open cluster; both planets orbit mid-M dwarf stars and are approximately Neptune-sized. With a well-determined stellar density from the planetary transit, and with an independently known metallicity from its cluster membership, JS 183 provides a particularly valuable test of stellar models at the fully convective boundary. We find that JS 183 is the lowest-density transit host known at the fully convective boundary, and that its very low density is consistent with current models of stars just above the fully convective boundary but in tension with the models just below the fully convective boundary.
We report the discovery and confirmation of a transiting circumbinary planet (PH1b) around KIC 4862625, an eclipsing binary in the Kepler field. The planet was discovered by volunteers searching the first six Quarters of publicly available Kepler dat a as part of the Planet Hunters citizen science project. Transits of the planet across the larger and brighter of the eclipsing stars are detectable by visual inspection every ~137 days, with seven transits identified in Quarters 1-11. The physical and orbital parameters of both the host stars and planet were obtained via a photometric-dynamical model, simultaneously fitting both the measured radial velocities and the Kepler light curve of KIC 4862625. The 6.18 +/- 0.17 Earth radii planet orbits outside the 20-day orbit of an eclipsing binary consisting of an F dwarf (1.734 +/- 0.044 Solar radii, 1.528 +/- 0.087 Solar masses) and M dwarf (0.378+/- 0.023 Solar radii, 0.408 +/- 0.024 Solar masses). For the planet, we find an upper mass limit of 169 Earth masses (0.531 Jupiter masses) at the 99.7% confidence level. With a radius and mass less than that of Jupiter, PH1b is well within the planetary regime. Outside the planets orbit, at ~1000 AU,a previously unknown visual binary has been identified that is likely bound to the planetary system, making this the first known case of a quadruple star system with a transiting planet.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا