ترغب بنشر مسار تعليمي؟ اضغط هنا

A Low-Mass Exoplanet Candidate Detected By ${it K2}$ Transiting the Praesepe M Dwarf JS 183

90   0   0.0 ( 0 )
 نشر من قبل Joshua Pepper
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the discovery of a repeating photometric signal from a low-mass member of the Praesepe open cluster that we interpret as a Neptune-sized transiting planet. The star is JS 183 (HSHJ 163, EPIC 211916756) with $T_{rm eff} = 3325pm100$ K, $M_{*} = 0.44pm0.04$ $M_{odot}$, $R_{*} = 0.44pm0.03$ $R_{odot}$, and $log{g_*} = 4.82pm0.06$. The planet has an orbital period of 10.134588 days and a radius of $R_{P}= 0.32pm0.02$ $R_J$. Since the star is faint at $V=16.5$ and $J=13.3$, we are unable to obtain a measured radial-velocity orbit, but we can constrain the companion mass to below about 1.7 $M_J$, and thus well below the planetary boundary. JS 183b (since designated as K2-95b) is the second transiting planet found with ${it K2}$ that resides in a several hundred Myr open cluster; both planets orbit mid-M dwarf stars and are approximately Neptune-sized. With a well-determined stellar density from the planetary transit, and with an independently known metallicity from its cluster membership, JS 183 provides a particularly valuable test of stellar models at the fully convective boundary. We find that JS 183 is the lowest-density transit host known at the fully convective boundary, and that its very low density is consistent with current models of stars just above the fully convective boundary but in tension with the models just below the fully convective boundary.

قيم البحث

اقرأ أيضاً

Planet host stars with well-constrained ages provide a rare window to the time domain of planet formation and evolution. The NASA K2 mission has enabled the discovery of the vast majority of known planets transiting stars in clusters, providing a val uable sample of planets with known ages and radii. We present the discovery of two planets transiting K2-264, an M2 dwarf in the intermediate age (600-800 Myr) Praesepe open cluster (also known as the Beehive Cluster, M44, or NGC 2632), which was observed by K2 during Campaign 16. The planets have orbital periods of 5.8 and 19.7 days, and radii of $2.2 pm 0.2 $ and $2.7 pm 0.2$ $R_oplus$, respectively, and their equilibrium temperatures are $496 pm 10$ and $331 pm 7$ $K$, making this a system of two warm sub-Neptunes. When placed in the context of known planets orbiting field stars of similar mass to K2-264, these planets do not appear to have significantly inflated radii, as has previously been noted for some cluster planets. As the second known system of multiple planets transiting a star in a cluster, K2-264 should be valuable for testing theories of photoevaporation in systems of multiple planets. Follow-up observations with current near-infrared (NIR) spectrographs could yield planet mass measurements, which would provide information about the mean densities and compositions of small planets soon after photoevaporation is expected to have finished. Follow-up NIR transit observations using Spitzer or large ground-based telescopes could yield improved radius estimates, further enhancing the characterization of these interesting planets.
We report on the discovery of three transiting super-Earths around K2-155 (EPIC 210897587), a relatively bright early M dwarf ($V=12.81$ mag) observed during Campaign 13 of the NASA K2 mission. To characterize the system and validate the planet candi dates, we conducted speckle imaging and high-dispersion optical spectroscopy, including radial velocity measurements. Based on the K2 light curve and the spectroscopic characterization of the host star, the planet sizes and orbital periods are $1.55_{-0.17}^{+0.20},R_oplus$ and $6.34365pm 0.00028$ days for the inner planet; $1.95_{-0.22}^{+0.27},R_oplus$ and $13.85402pm 0.00088$ days for the middle planet; and $1.64_{-0.17}^{+0.18},R_oplus$ and $40.6835pm 0.0031$ days for the outer planet. The outer planet (K2-155d) is near the habitable zone, with an insolation $1.67pm 0.38$ times that of the Earth. The planets radius falls within the range between that of smaller rocky planets and larger gas-rich planets. To assess the habitability of this planet, we present a series of 3D global climate simulations assuming that K2-155d is tidally locked and has an Earth-like composition and atmosphere. We find that the planet can maintain a moderate surface temperature if the insolation proves to be smaller than $sim 1.5$ times that of the Earth. Doppler mass measurements, transit spectroscopy, and other follow-up observations should be rewarding, since K2-155 is one of the optically brightest M dwarfs known to harbor transiting planets.
Small, cool planets represent the typical end-products of planetary formation. Studying the archi- tectures of these systems, measuring planet masses and radii, and observing these planets atmospheres during transit directly informs theories of plane t assembly, migration, and evolution. Here we report the discovery of three small planets orbiting a bright (Ks = 8.6 mag) M0 dwarf using data collected as part of K2, the new transit survey using the re-purposed Kepler spacecraft. Stellar spectroscopy and K2 photometry indicate that the system hosts three transiting planets with radii 1.5-2.1 R_Earth, straddling the transition region between rocky and increasingly volatile-dominated compositions. With orbital periods of 10-45 days the planets receive just 1.5-10x the flux incident on Earth, making these some of the coolest small planets known orbiting a nearby star; planet d is located near the inner edge of the systems habitable zone. The bright, low-mass star makes this system an excellent laboratory to determine the planets masses via Doppler spectroscopy and to constrain their atmospheric compositions via transit spectroscopy. This discovery demonstrates the ability of K2 and future space-based transit searches to find many fascinating objects of interest.
The role of stellar age in the measured properties and occurrence rates of exoplanets is not well understood. This is in part due to a paucity of known young planets and the uncertainties in age-dating for most exoplanet host stars. Exoplanets with w ell-constrained ages, particularly those which are young, are useful as benchmarks for studies aiming to constrain the evolutionary timescales relevant for planets. Such timescales may concern orbital migration, gravitational contraction, or atmospheric photo-evaporation, among other mechanisms. Here we report the discovery of an adolescent transiting sub-Neptune from K2 photometry of the low-mass star K2-284. From multiple age indicators we estimate the age of the star to be 120 Myr, with a 68% confidence interval of 100-760 Myr. The size of K2-284 b ($R_P$ = 2.8 $pm$ 0.1 $R_oplus$) combined with its youth make it an intriguing case study for photo-evaporation models, which predict enhanced atmospheric mass loss during early evolutionary stages.
K2-55b is a Neptune-sized planet orbiting a K7 dwarf with a radius of $0.715^{+0.043}_{-0.040}R_odot$, a mass of $0.688pm0.069 M_odot$, and an effective temperature of $4300^{+107}_{-100}$K. Having characterized the host star using near-infrared spec tra obtained at IRTF/SpeX, we observed a transit of K2-55b with Spitzer/IRAC and confirmed the accuracy of the original K2 ephemeris for future follow-up transit observations. Performing a joint fit to the Spitzer/IRAC and K2 photometry, we found a planet radius of $4.41^{+0.32}_{-0.28} R_oplus$, an orbital period of $2.84927265_{-6.42times10^{-6}}^{+6.87times10^{-6}}$ days, and an equilibrium temperature of roughly 900K. We then measured the planet mass by acquiring twelve radial velocity (RV) measurements of the system using HIRES on the 10m Keck I Telescope. Our RV data set precisely constrains the mass of K2-55b to $43.13^{+5.98}_{-5.80} M_oplus$, indicating that K2-55b has a bulk density of $2.8_{-0.6}^{+0.8}$ g cm$^{-3}$ and can be modeled as a rocky planet capped by a modest H/He envelope ($M_{rm envelope} = 12pm3% M_p$). K2-55b is denser than most similarly sized planets, raising the question of whether the high planetary bulk density of K2-55b could be attributed to the high metallicity of K2-55. The absence of a substantial volatile envelope despite the large mass of K2-55b poses a challenge to current theories of gas giant formation. We posit that K2-55b may have escaped runaway accretion by migration, late formation, or inefficient core accretion or that K2-55b was stripped of its envelope by a late giant impact.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا