ﻻ يوجد ملخص باللغة العربية
A (special case of a) fundamental result of Horn and Loewner [Trans. Amer. Math. Soc. 1969] says that given an integer $n geq 1$, if the entrywise application of a smooth function $f : (0,infty) to mathbb{R}$ preserves the set of $n times n$ positive semidefinite matrices with positive entries, then the first $n$ derivatives of $f$ are non-negative on $(0,infty)$. In a recent joint work with Belton-Guillot-Putinar [J. Eur. Math. Soc., in press], we proved a stronger version, and further used it to strengthen the Schoenberg-Rudin characterization of dimension-free positivity preservers [Duke Math. J. 1942, 1959]. In parallel, in recent works with Belton-Guillot-Putinar [Adv. Math. 2016] and with Tao [Amer. J. Math., in press] we used local, real analyt
Given $Isubsetmathbb{C}$ and an integer $N>0$, a function $f:Itomathbb{C}$ is entrywise positivity preserving on positive semidefinite (p.s.d.) matrices $A=(a_{jk})in I^{Ntimes N}$, if the entrywise application $f[A]=(f(a_{jk}))$ of $f$ to $A$ is p.s
A classical theorem proved in 1942 by I.J. Schoenberg describes all real-valued functions that preserve positivity when applied entrywise to positive semidefinite matrices of arbitrary size; such functions are necessarily analytic with non-negative T
This survey contains a selection of topics unified by the concept of positive semi-definiteness (of matrices or kernels), reflecting natural constraints imposed on discrete data (graphs or networks) or continuous objects (probability or mass distribu
We prove that the only entrywise transforms of rectangular matrices which preserve total positivity or total non-negativity are either constant or linear. This follows from an extended classification of preservers of these two properties for matrices
A classical result by Schoenberg (1942) identifies all real-valued functions that preserve positive semidefiniteness (psd) when applied entrywise to matrices of arbitrary dimension. Schoenbergs work has continued to attract significant interest, incl