ﻻ يوجد ملخص باللغة العربية
A classical result by Schoenberg (1942) identifies all real-valued functions that preserve positive semidefiniteness (psd) when applied entrywise to matrices of arbitrary dimension. Schoenbergs work has continued to attract significant interest, including renewed recent attention due to applications in high-dimensional statistics. However, despite a great deal of effort in the area, an effective characterization of entrywise functions preserving positivity in a fixed dimension remains elusive to date. As a first step, we characterize new classes of polynomials preserving positivity in fixed dimension. The proof of our main result is representation theoretic, and employs Schur polynomials. An alternate, variational approach also leads to several interesting consequences including (a) a hitherto unexplored Schubert cell-type stratification of the cone of psd matrices, (b) new connections between generalized Rayleigh quotients of Hadamard powers and Schur polynomials, and (c) a description of the joint kernels of Hadamard powers.
A classical theorem proved in 1942 by I.J. Schoenberg describes all real-valued functions that preserve positivity when applied entrywise to positive semidefinite matrices of arbitrary size; such functions are necessarily analytic with non-negative T
We prove that the only entrywise transforms of rectangular matrices which preserve total positivity or total non-negativity are either constant or linear. This follows from an extended classification of preservers of these two properties for matrices
LLT polynomials are $q$-analogues of product of Schur functions that are known to be Schur-positive by Grojnowski and Haiman. However, there is no known combinatorial formula for the coefficients in the Schur expansion. Finding such a formula also pr
Cylindric skew Schur functions, a generalization of skew Schur functions, are closely related to the famous problem finding a combinatorial formula for the 3-point Gromov-Witten invariants of Grassmannian. In this paper, we prove cylindric Schur posi
The main purpose of this paper is to show that the multiplication of a Schubert polynomial of finite type $A$ by a Schur function, which we refer to as Schubert vs. Schur problem, can be understood from the multiplication in the space of dual $k$-Sch