ﻻ يوجد ملخص باللغة العربية
Study of dissipative quantum phase transitions in the Ohmic spin-boson model is numerically challenging in a dense limit of environmental modes. In this work, large-scale numerical simulations are carried out based on the variational principle. The validity of variational calculations, spontaneous breakdown of symmetries, and quantum fluctuations and correlations in the Ohmic bath are carefully analyzed, and the critical coupling as well as exponents are accurately determined in the weak tunneling and continuum limits. In addition, quantum criticality of the Ohmic bath is uncovered both in the delocalized phase and at the transition point.
We revisit the critical behavior of the sub-ohmic spin-boson model. Analysis of both the leading and subleading terms in the temperature dependence of the inverse static local spin susceptibility at the quantum critical point, calculated using a nume
Frustration-free (FF) spin chains have a property that their ground state minimizes all individual terms in the chain Hamiltonian. We ask how entangled the ground state of a FF quantum spin-s chain with nearest-neighbor interactions can be for small
Quasiperiodic systems are aperiodic but deterministic, so their critical behavior differs from that of clean systems as well as disordered ones. Quasiperiodic criticality was previously understood only in the special limit where the couplings follow
Quantum critical points in quasiperiodic magnets can realize new universality classes, with critical properties distinct from those of clean or disordered systems. Here, we study quantum phase transitions separating ferromagnetic and paramagnetic pha
Environmental interaction is a fundamental consideration in any controlled quantum system. While interaction with a dissipative bath can lead to decoherence, it can also provide desirable emergent effects including induced spin-spin correlations. In