ﻻ يوجد ملخص باللغة العربية
We present an optical spectrum of the energetic Type Ib supernova (SN) 2012au obtained at an unprecedented epoch of 6.2 years after explosion. Forbidden transition emission lines of oxygen and sulfur are detected with expansion velocities of 2300 km/s. The lack of narrow H Balmer lines suggests that interaction with circumstellar material is not a dominant source of the observed late-time emission. We also present a deep Chandra observation that reveals no X-ray emission down to a luminosity of L_X < 2 x 10^{38} erg/s (0.5-10 keV). Our findings are consistent with the notion that SN 2012au is associated with a diverse subset of SNe, including long-duration gamma-ray burst SNe and superluminous SNe, harboring pulsar/magnetar wind nebulae that influence core-collapse explosion dynamics on a wide range of energy scales. We hypothesize that these systems may all evolve into a similar late-time phase dominated by forbidden oxygen transitions, and predict that emission line widths should remain constant or broaden a few per cent per year due to the acceleration of ejecta by the pulsar/magnetar bubble.
We present a set of photometric and spectroscopic observations of a bright Type Ib supernova SN 2012au from -6d until ~+150d after maximum. The shape of its early R-band light curve is similar to that of an average Type Ib/c supernova. The peak absol
Optical, near-infrared (NIR) photometric and spectroscopic studies, along with the optical imaging polarimetric results for SN 2012au, are presented in this article to constrain the nature of the progenitor and other properties. Well-calibrated multi
We present the detailed optical evolution of a type Ib SN 2015dj in NGC 7371, using data spanning up to $sim$ 170 days after discovery. SN 2015dj shares similarity in light curve shape with SN 2007gr and peaks at M$_{V}$ = $-17.37pm$0.02 mag. Analyti
Since the day of its explosion, SN 1987A (SN87A) was closely monitored with the aim to study its evolution and to detect its central compact relic. The detection of neutrinos from the supernova strongly supports the formation of a neutron star (NS).
A pulsar wind nebula inside a supernova remnant provides a unique insight into the properties of the central neutron star, the relativistic wind powered by its loss of rotational energy, its progenitor supernova, and the surrounding environment. In t