ترغب بنشر مسار تعليمي؟ اضغط هنا

Indication of a Pulsar Wind Nebula in the hard X-ray emission from SN 1987A

114   0   0.0 ( 0 )
 نشر من قبل Emanuele Greco
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Since the day of its explosion, SN 1987A (SN87A) was closely monitored with the aim to study its evolution and to detect its central compact relic. The detection of neutrinos from the supernova strongly supports the formation of a neutron star (NS). However, the constant and fruitless search for this object has led to different hypotheses on its nature. Up to date, the detection in the ALMA data of a feature somehow compatible with the emission arising from a proto Pulsar Wind Nebula (PWN) is the only hint of the existence of such elusive compact object. Here we tackle this 33-years old issue by analyzing archived observations of SN87A performed Chandra and NuSTAR in different years. We firmly detect nonthermal emission in the $10-20$ kev energy band, due to synchrotron radiation. The possible physical mechanism powering such emission is twofold: diffusive shock acceleration (DSA) or emission arising from an absorbed PWN. By relating a state-of-the-art magneto-hydrodynamic simulation of SN87A to the actual data, we reconstruct the absorption pattern of the PWN embedded in the remnant and surrounded by cold ejecta. We found that, even though the DSA scenario cannot be firmly excluded, the most likely scenario that well explains the data is the PWN emission.



قيم البحث

اقرأ أيضاً

70 - Hongjun An 2019
We report on new NuSTAR and archival Chandra observations of the pulsar wind nebula (PWN) 3C 58. Using the X-ray data, we measure energy-dependent morphologies and spatially-resolved spectra of the PWN. We find that the PWN size becomes smaller with increasing energy and that the spectrum is softer in outer regions. In the spatially integrated spectrum of the PWN, we find a hint of a spectral break at $sim$25 keV. We interpret these findings using synchrotron-radiation scenarios. We attribute the size change to the synchrotron burn-off effect. The radial profile of the spectral index has a break at $Rsim80$, implying a maximum electron energy of $sim$200 TeV which is larger than a previous estimate, and the 25-keV spectral break corresponds to a maximum electron energy of $sim$140 TeV for an assumed magnetic field strength of 80 $mu$G. Combining the X-ray data and a previous radio-to-IR SED, we measure a cooling break frequency to be $sim 10^{15}$ Hz, which constrains the magnetic-field strength in 3C 58 to be 30-200$mu$G for an assumed age range of 800-5000 years.
Pulsars are known to power winds of relativistic particles that can produce bright nebulae by interacting with the surrounding medium. These pulsar wind nebulae (PWNe) are observed in the radio, optical, x-rays and, in some cases, also at TeV energie s, but the lack of information in the gamma-ray band prevents from drawing a comprehensive multiwavelength picture of their phenomenology and emission mechanisms. Using data from the AGILE satellite, we detected the Vela pulsar wind nebula in the energy range from 100 MeV to 3 GeV. This result constrains the particle population responsible for the GeV emission, probing multivavelength PWN models, and establishes a class of gamma-ray emitters that could account for a fraction of the unidentified Galactic gamma-ray sources.
172 - G. G. Pavlov 2010
Previous observations of the middle-aged pulsar Geminga with XMM-Newton and Chandra have shown an unusual pulsar wind nebula (PWN), with a 20 long central (axial) tail directed opposite to the pulsars proper motion and two 2 long, bent lateral (outer ) tails. Here we report on a deeper (78 ks) Chandra observation and a few additional XMM-Newton observations of the Geminga PWN. The new Chandra observation has shown that the axial tail, which includes up to three brighter blobs, extends at least 50 (i.e., 0.06 d_{250} pc) from the pulsar. It also allowed us to image the patchy outer tails and the emission in the immediate vicinity of the pulsar with high resolution. The PWN luminosity, L_{0.3-8 keV} ~ 3times 10^{29} d_{250}^2 erg/s, is lower than the pulsars magnetospheric luminosity by a factor of 10. The spectra of the PWN elements are rather hard (photon index ~ 1). Comparing the two Chandra images, we found evidence of PWN variability, including possible motion of the blobs along the axial tail. The X-ray PWN is the synchrotron radiation from relativistic particles of the pulsar wind; its morphology is connected with the supersonic motion of Geminga. We speculate that the outer tails are either (1) a sky projection of the limb-brightened boundary of a shell formed in the region of contact discontinuity, where the wind bulk flow is decelerated by shear instability, or (2) polar outflows from the pulsar bent by the ram pressure from the ISM. In the former case, the axial tail may be a jet emanating along the pulsars spin axis, perhaps aligned with the direction of motion. In the latter case, the axial tail may be the shocked pulsar wind collimated by the ram pressure.
A recent study by Posselt et al. (2017) reported the deepest X-ray investigation of the Geminga pulsar wind nebula (PWN) by using emph{Chandra X-ray Observatory}. In comparison with previous studies of this system, a number of new findings have been reported and we found these suggest the possible variabilities in various components of this PWN. This motivates us to carry out a dedicated search for the morphological and spectral variations of this complex nebula. We have discovered variabilities on timescales from a few days to a few months from different components of the nebula. The fastest change occurred in the circumstellar environment at a rate of 80 per cent of the speed of light. One of the most spectacular results is the wiggling of a half light-year long tail as an extension of the jet, which is significantly bent by the ram pressure. The jet wiggling occurred at a rate of about 20 per cent of the speed of light. This twisted structure can possibly be a result of a propagating torsional Alf`{v}en wave. We have also found evidence of spectral hardening along this tail for a period of about nine months.
We present results from the Hitomi X-ray observation of a young composite-type supernova remnant (SNR) G21.5$-$0.9, whose emission is dominated by the pulsar wind nebula (PWN) contribution. The X-ray spectra in the 0.8-80 keV range obtained with the Soft X-ray Spectrometer (SXS), Soft X-ray Imager (SXI) and Hard X-ray Imager (HXI) show a significant break in the continuum as previously found with the NuSTAR observation. After taking into account all known emissions from the SNR other than the PWN itself, we find that the Hitomi spectra can be fitted with a broken power law with photon indices of $Gamma_1=1.74pm0.02$ and $Gamma_2=2.14pm0.01$ below and above the break at $7.1pm0.3$ keV, which is significantly lower than the NuSTAR result ($sim9.0$ keV). The spectral break cannot be reproduced by time-dependent particle injection one-zone spectral energy distribution models, which strongly indicates that a more complex emission model is needed, as suggested by recent theoretical models. We also search for narrow emission or absorption lines with the SXS, and perform a timing analysis of PSR J1833$-$1034 with the HXI and SGD. No significant pulsation is found from the pulsar. However, unexpectedly, narrow absorption line features are detected in the SXS data at 4.2345 keV and 9.296 keV with a significance of 3.65 $sigma$. While the origin of these features is not understood, their mere detection opens up a new field of research and was only possible with the high resolution, sensitivity and ability to measure extended sources provided by an X-ray microcalorimeter.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا