ترغب بنشر مسار تعليمي؟ اضغط هنا

Shadows and asymmetries in the T Tauri disk HD 143006: Evidence for a misaligned inner disk

346   0   0.0 ( 0 )
 نشر من قبل Myriam Benisty
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

While planet formation is thought to occur early in the history of a protoplanetary disk, the presence of planets embedded in disks, or of other processes driving disk evolution, might be traced from their imprints on the disk structure. We observed the T Tauri star HD 143006, located in the 5-11 Myr-old Upper Sco region, in polarized scattered light with VLT/SPHERE at near-infrared wavelengths, reaching an angular resolution of ~0.037 (~6 au). We obtained two datasets, one with a 145 mas diameter coronagraph, and the other without, enabling us to probe the disk structure down to an angular separation of ~0.06 (~10 au). In our observations, the disk of HD 143006 is clearly resolved up to ~0.5 and shows a clear large-scale asymmetry with the eastern side brighter than the western side. We detect a number of additional features, including two gaps and a ring. The ring shows an overbrightness at a position angle (PA) of ~140 deg, extending over a range in position angle of ~60 deg, and two narrow dark regions. The two narrow dark lanes and the overall large-scale asymmetry are indicative of shadowing effects, likely due to a misaligned inner disk. We demonstrate the remarkable resemblance between the scattered light image of HD 143006 and a model prediction of a warped disk due to an inclined binary companion. The warped disk model, based on the hydrodynamic simulations combined with 3D radiative transfer calculations, reproduces all major morphological features. However, it does not account for the observed overbrightness at PA~140 deg. Shadows have been detected in several protoplanetary disks, suggesting that misalignment in disks is not uncommon. However, the origin of the misalignment is not clear. As-yet-undetected stellar or massive planetary companions could be responsible for them, and naturally account for the presence of depleted inner cavities.



قيم البحث

اقرأ أيضاً

We present a detailed analysis of new ALMA observations of the disk around the T-Tauri star HD 143006, which at 46 mas (7.6 au) resolution reveal new substructures in the 1.25 mm continuum emission. The disk resolves into a series of concentric rings and gaps together with a bright arc exterior to the rings that resembles hydrodynamics simulations of a vortex, and a bridge-like feature connecting the two innermost rings. Although our $^{12}$CO observations at similar spatial resolution do not show obvious substructure, they reveal an inner disk depleted of CO emission. From the continuum emission and the CO velocity field we find that the innermost ring has a higher inclination than the outermost rings and the arc. This is evidence for either a small ($sim8^{circ}$) or moderate ($sim41^{circ}$) misalignment between the inner and outer disk, depending on the specific orientation of the near/far sides of the inner/outer disk. We compare the observed substructures in the ALMA observations with recent scattered light data from VLT/SPHERE of this object. In particular, the location of narrow shadow lanes in the SPHERE image combined with pressure scale height estimates, favor a large misalignment of about $41^{circ}$. We discuss our findings in the context of a dust-trapping vortex, planet-carved gaps, and a misaligned inner disk due to the presence of an inclined companion to HD 143006.
Studying the physical conditions structuring the young circumstellar disks is required for understanding the onset of planet formation. Of particular interest is the protoplanetary disk surrounding the Herbig star MWC480. The structure and properties of the circumstellar disk of MWC480 are studied by infrared interferometry and interpreted from a modeling approach. New observations are driving this study, in particular some recent Very Large Telescope Interferometer (VLTI)/MIDI data acquired in December 2013. Our one-component disk model could not reproduce simultaneously all our data: the Spectral Energy Distribution, the near-infrared Keck Interferometer data and the mid-infrared data obtained with the MIDI instrument. In order to explain all measurements, one possibility is to add an asymmetry in our one-component disk model with the assumption that the structure of the disk of MWC480 has not varied with time. Several scenarios are tested, and the one considering the presence of an azimuthal bright feature in the inner component of the disk model provides a better fit of the data. (In this study, we assumed that the size of the outer disk of MWC480 to be 20 au since most of the near and mid-IR emissions come from below 20 au. In our previous study (Jamialahmadi et al. 2015), we adopted an outer radius of 80 au, which is consistent with the value found by previous studies based on mm observations).
82 - M. Benisty , T. Stolker , A. Pohl 2016
Understanding the diversity of planets requires to study the morphology and the physical conditions in the protoplanetary disks in which they form. We observed and spatially resolved the disk around the ~10 Myr old protoplanetary disk HD 100453 in po larized scattered light with SPHERE/VLT at optical and near-infrared wavelengths, reaching an angular resolution of ~0.02, and an inner working angle of ~0.09. We detect polarized scattered light up to ~0.42 (~48 au) and detect a cavity, a rim with azimuthal brightness variations at an inclination of 38 degrees, two shadows and two symmetric spiral arms. The spiral arms originate near the location of the shadows, close to the semi major axis. We detect a faint spiral-like feature in the SW that can be interpreted as the scattering surface of the bottom side of the disk, if the disk is tidally truncated by the M-dwarf companion currently seen at a projected distance of ~119 au. We construct a radiative transfer model that accounts for the main characteristics of the features with an inner and outer disk misaligned by ~72 degrees. The azimuthal brightness variations along the rim are well reproduced with the scattering phase function of the model. While spirals can be triggered by the tidal interaction with the companion, the close proximity of the spirals to the shadows suggests that the shadows could also play a role. The change in stellar illumination along the rim, induces an azimuthal variation of the scale height that can contribute to the brightness variations. Dark regions in polarized images of transition disks are now detected in a handful of disks and often interpreted as shadows due to a misaligned inner disk. The origin of such a misalignment in HD 100453, and of the spirals, is unclear, and might be due to a yet-undetected massive companion inside the cavity, and on an inclined orbit.
Pairs of azimuthal intensity decrements at near symmetric locations have been seen in a number of protoplanetary disks. They are most commonly interpreted as the two shadows cast by a highly misaligned inner disk. Direct evidence of such an inner dis k, however, remain largely illusive, except in rare cases. In 2012, a pair of such shadows were discovered in scattered light observations of the near face-on disk around 2MASS J16042165-2130284, a transitional object with a cavity $sim$60 AU in radius. The star itself is a `dipper, with quasi-periodic dimming events on its light curve, commonly hypothesized as caused by extinctions by transiting dusty structures in the inner disk. Here, we report the detection of a gas disk inside the cavity using ALMA observations with $sim0$farcs2 angular resolution. A twisted butterfly pattern is found in the moment 1 map of CO (3-2) emission line towards the center, which is the key signature of a high misalignment between the inner and outer disks. In addition, the counterparts of the shadows are seen in both dust continuum emission and gas emission maps, consistent with these regions being cooler than their surroundings. Our findings strongly support the hypothesized misaligned-inner-disk origin of the shadows in the J1604-2130 disk. Finally, the inclination of inner disk would be close to -45 $^{circ}$ in contrast with 45 $^{circ}$; it is possible that its internal asymmetric structures cause the variations on the light curve of the host star.
Optical/IR images of transition disks (TDs) have revealed deep intensity decrements in the rings of HAeBes HD142527 and HD100453, that can be interpreted as shadowing from sharply tilted inner disks, such that the outer disks are directly exposed to stellar light. Here we report similar dips in SPHERE+IRDIS differential polarized imaging (DPI) of TTauri DoAr44. With a fairly axially symmetric ring in the submm radio continuum, DoAr44 is likely also a warped system. We constrain the warp geometry by comparing radiative transfer predictions with the DPI data in H band (Q_phi(H)) and with a re-processing of archival 336GHz ALMA observations. The observed DPI shadows have coincident radio counterparts, but the intensity drops are much deeper in Q_phi(H) (~88%), compared to the shallow drops at 336GHz (~24%). Radiative transfer predictions with an inner disk tilt of ~30+-5deg approximately account for the observations. ALMA long-baseline observations should allow the observation of the warped gas kinematics inside the cavity of DoAr44.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا