ترغب بنشر مسار تعليمي؟ اضغط هنا

On the inner disk structure of MWC480: evidence for asymmetries?

153   0   0.0 ( 0 )
 نشر من قبل Narges Jamialahmadi
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Studying the physical conditions structuring the young circumstellar disks is required for understanding the onset of planet formation. Of particular interest is the protoplanetary disk surrounding the Herbig star MWC480. The structure and properties of the circumstellar disk of MWC480 are studied by infrared interferometry and interpreted from a modeling approach. New observations are driving this study, in particular some recent Very Large Telescope Interferometer (VLTI)/MIDI data acquired in December 2013. Our one-component disk model could not reproduce simultaneously all our data: the Spectral Energy Distribution, the near-infrared Keck Interferometer data and the mid-infrared data obtained with the MIDI instrument. In order to explain all measurements, one possibility is to add an asymmetry in our one-component disk model with the assumption that the structure of the disk of MWC480 has not varied with time. Several scenarios are tested, and the one considering the presence of an azimuthal bright feature in the inner component of the disk model provides a better fit of the data. (In this study, we assumed that the size of the outer disk of MWC480 to be 20 au since most of the near and mid-IR emissions come from below 20 au. In our previous study (Jamialahmadi et al. 2015), we adopted an outer radius of 80 au, which is consistent with the value found by previous studies based on mm observations).

قيم البحث

اقرأ أيضاً

The inner structure and properties (temperature, mass) of the circumstellar disk of Herbig star MWC480 are studied by stellar interferometry method used in the infrared and are interpreted using semi-analytical models. From these models, the SED (Spe ctral Energy Distribution) was fitted and multi- wavelength intensity map of the source were calculated. The intensity map provides the input for modeling the Keck Interferometer (KI) data in the near-infrared (near-IR) and the data of the Very Large Telescope Interferometer (VLTI) with the mid-infrared instrument MIDI. We conclude that with our limited set of data, we can fit the SED, the Keck visibilities and the MIDI visibilities using a two-components disk model. Furthermore, we suspect that MWC480 has a transitional dusty disk. However, we need more MIDI observations with different baseline orientations to confirm our modeling.
While planet formation is thought to occur early in the history of a protoplanetary disk, the presence of planets embedded in disks, or of other processes driving disk evolution, might be traced from their imprints on the disk structure. We observed the T Tauri star HD 143006, located in the 5-11 Myr-old Upper Sco region, in polarized scattered light with VLT/SPHERE at near-infrared wavelengths, reaching an angular resolution of ~0.037 (~6 au). We obtained two datasets, one with a 145 mas diameter coronagraph, and the other without, enabling us to probe the disk structure down to an angular separation of ~0.06 (~10 au). In our observations, the disk of HD 143006 is clearly resolved up to ~0.5 and shows a clear large-scale asymmetry with the eastern side brighter than the western side. We detect a number of additional features, including two gaps and a ring. The ring shows an overbrightness at a position angle (PA) of ~140 deg, extending over a range in position angle of ~60 deg, and two narrow dark regions. The two narrow dark lanes and the overall large-scale asymmetry are indicative of shadowing effects, likely due to a misaligned inner disk. We demonstrate the remarkable resemblance between the scattered light image of HD 143006 and a model prediction of a warped disk due to an inclined binary companion. The warped disk model, based on the hydrodynamic simulations combined with 3D radiative transfer calculations, reproduces all major morphological features. However, it does not account for the observed overbrightness at PA~140 deg. Shadows have been detected in several protoplanetary disks, suggesting that misalignment in disks is not uncommon. However, the origin of the misalignment is not clear. As-yet-undetected stellar or massive planetary companions could be responsible for them, and naturally account for the presence of depleted inner cavities.
Spatially resolving the inner dust cavity of the transitional disks is a key to understanding the connection between planetary formation and disk dispersal. The disk around the Herbig star HD 139614 is of particular interest since it presents a pretr ansitional nature with an au-sized gap, in the dust, that was spatially resolved by mid-IR interferometry. Using new NIR interferometric observations, we aim to characterize the 0.1-10~au region of the HD~139614 disk further and identify viable mechanisms for the inner disk clearing. We report the first multiwavelength radiative transfer modeling of the interferometric data acquired on HD~139614 with PIONIER, AMBER, and MIDI, complemented by Herschel/PACS photometries. We confirm a gap structure in the um-sized dust, extending from about 2.5 au to 6 au, and constrained the properties of the inner dust component: e.g., a radially increasing surface density profile, and a depletion of 10^3 relative to the outer disk. Since self-shadowing and photoevaporation appears unlikely to be responsible for the au-sized gap of HD~139614, we thus tested if dynamical clearing could be a viable mechanism using hydrodynamical simulations to predict the gaseous disk structure. Indeed, a narrow au-sized gap is expected when a single giant planet interacts with the disk. Assuming that small dust grains are well coupled to the gas, we found that a ~ 3~Mjup planet located at 4.5 au from the star could, in less than 1 Myr, reproduce most of the aspects of the dust surface density profile, while no significant depletion in gas occurred in the inner disk, in contrast to the dust. However, the dust-depleted inner disk could be explained by the expected dust filtration by the gap and the efficient dust growth/fragmentation in the inner disk regions. Our results support the hypothesis of a giant planet opening a gap and shaping the inner region of the HD~139614 disk.
Two studies utilizing sparse aperture masking (SAM) interferometry and $H_{rm alpha}$ differential imaging have reported multiple jovian companions around the young solar-mass star, LkCa 15 (LkCa 15 bcd): the first claimed direct detection of infant, newly-formed planets (protoplanets). We present new near-infrared direct imaging/spectroscopy from the SCExAO system coupled with the CHARIS integral field spectrograph and multi-epoch thermal infrared imaging from Keck/NIRC2 of LkCa 15 at high Strehl ratios. These data provide the first direct imaging look at the same wavelengths and in the same locations where previous studies identified the LkCa 15 protoplanets and thus offer the first decisive test of their existence. The data do not reveal these planets. Instead, we resolve extended emission tracing a dust disk with a brightness and location comparable to that claimed for LkCa 15 bcd. Forward-models attributing this signal to orbiting planets are inconsistent with the combined SCExAO/CHARIS and Keck/NIRC2 data. An inner disk provides a more compelling explanation for the SAM detections and perhaps also the claimed $H_{alpha}$ detection of LkCa 15 b. We conclude that there is currently no clear, direct evidence for multiple protoplanets orbiting LkCa 15, although the system likely contains at least one unseen jovian companion. To identify jovian companions around LkCa 15 from future observations, the inner disk should be detected and its effect modeled, removed, and shown to be distinguishable from planets. Protoplanet candidates identified from similar systems should likewise be clearly distinguished from disk emission through modeling.
High-resolution R~50 000 long-slit spectroscopy of the inner knots of the highly symmetrical protostellar outflow HH 212 was obtained in the 1-0 S(1) line of H2 at 2.12 micron with a spatial resolution of ~0.45 arcsec. At the resulting velocity resol ution of ~6 km s-1, multiple slit oriented observations of the northern first knot NK1 clearly show double-peaked line profiles consistent with either a radiative bow shock or dual (forward and reverse) shocks. In contrast, the velocity distribution of the southern first knot SK1 remains single-peaked, suggesting a significantly lower jet velocity and possibly a different density variation in the jet pulses in the southern flow compared to the northern flow. Comparison with a semi-empirical analytical model of bow shock emission allows us to constrain parameters such as the bow inclination to the line of sight, the bow shock and jet velocities for each flow. Although a few features are not reproduced by this model, it confirms the presence of several dynamical and kinematical asymmetries between opposite sides of the HH 212 bipolar jet. The position-velocity diagrams of both knots exhibit complex dynamics that are broadly consistent with emission from a bow shock and/or jet shock, which does not exclude jet rotation, although a clear signature of jet rotation in HH 212 is missing. Alternative interpretations of the variation of radial velocity across these knots, such as a variation in the jet orientation, as well as for the velocity asymmetries between the flows, are also considered. The presence of a correlation between flow velocity and collimation in each flow is suggested.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا