ترغب بنشر مسار تعليمي؟ اضغط هنا

Network-Decomposed Hierarchical Cooperation in Ad Hoc Networks With Social Relationships

296   0   0.0 ( 0 )
 نشر من قبل Won-Yong Shin
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we introduce a network-decomposed hierarchical cooperation (HC) protocol and completely characterize the corresponding throughput--delay trade-off for a large wireless ad hoc network formed in the context of social relationships. Instead of randomly picking source--destination pairings, we first consider a distance-based social formation model characterized by the social group density $gamma$ and the number of social contacts per node, $q$, where the probability that any two nodes in distance $d$ away from each other are socially connected is assumed to be proportional to $d^{-gamma}$, which is a feasible scenario. Then, using muiltihop and network-decomposed HC protocols under our social formation model, we analyze a generalized throughput--delay trade-off according to the operating regimes with respect to parameters $gamma$ and $q$ in both a dense network of unit area and an extended network of unit node density via a non-straightforward network transformation strategy. Our main results reveal that as $gamma$ increases, performance on the throughput--delay trade-off can remarkably be improved, compared to the network case with no social relationships. It is also shown that in the dense network, the network-decomposed HC protocol always outperforms the multihop protocol, while the superiority of the network-decomposed HC depends on $gamma$ and the path-loss exponent in the extended network.



قيم البحث

اقرأ أيضاً

Given $n$ randomly located source-destination (S-D) pairs on a fixed area network that want to communicate with each other, we study the age of information with a particular focus on its scaling as the network size $n$ grows. We propose a three-phase transmission scheme that utilizes textit{hierarchical cooperation} between users along with textit{mega update packets} and show that an average age scaling of $O(n^{alpha(h)}log n)$ per-user is achievable where $h$ denotes the number of hierarchy levels and $alpha(h) = frac{1}{3cdot2^h+1}$ which tends to $0$ as $h$ increases such that asymptotically average age scaling of the proposed scheme is $O(log n)$. To the best of our knowledge, this is the best average age scaling result in a status update system with multiple S-D pairs.
Interference between nodes directly limits the capacity of mobile ad hoc networks. This paper focuses on spatial interference cancelation with perfect channel state information (CSI), and analyzes the corresponding network capacity. Specifically, by using multiple antennas, zero-forcing beamforming is applied at each receiver for canceling the strongest interferers. Given spatial interference cancelation, the network transmission capacity is analyzed in this paper, which is defined as the maximum transmitting node density under constraints on outage and the signal-to-interference-noise ratio. Assuming the Poisson distribution for the locations of network nodes and spatially i.i.d. Rayleigh fading channels, mathematical tools from stochastic geometry are applied for deriving scaling laws for transmission capacity. Specifically, for small target outage probability, transmission capacity is proved to increase following a power law, where the exponent is the inverse of the size of antenna array or larger depending on the pass loss exponent. As shown by simulations, spatial interference cancelation increases transmission capacity by an order of magnitude or more even if only one extra antenna is added to each node.
Ad-hoc Social Network (ASNET), which explores social connectivity between users of mobile devices, is becoming one of the most important forms of todays internet. In this context, maximum bandwidth utilization of intermediate nodes in resource scarce environments is one of the challenging tasks. Traditional Transport Control Protocol (TCP) uses the round trip time mechanism for sharing bandwidth resources between users. However, it does not explore socially-aware properties between nodes and cannot differentiate effectively between various types of packet losses in wireless networks. In this paper, a socially-aware congestion avoidance protocol, namely TIBIAS, which takes advantage of similarity matching social properties among intermediate nodes, is proposed to improve the resource efficiency of ASNETs. TIBIAS performs efficient data transfer over TCP. During the course of bandwidth resource allocation, it gives high priority for maximally matched interest similarity between different TCP connections on ASNET links. TIBIAS does not require any modification at lower layers or on receiver nodes. Experimental results show that TIBIAS performs better as compared against existing protocols, in terms of link utilization, unnecessary reduction of the congestion window, throughput and retransmission ratio.
Relying on multi-hop communication techniques, aeronautical ad hoc networks (AANETs) seamlessly integrate ground base stations (BSs) and satellites into aircraft communications for enhancing the on-demand connectivity of planes in the air. In this in tegrated AANET context we investigate the shortest-path routing problem with the objective of minimizing the total delay of the in-flight connection from the ground BS subject to certain minimum-rate constraints for all selected links in support of low-latency and high-speed services. Inspired by the best-first search and priority queue concepts, we model the problem formulated by a weighted digraph and find the optimal route based on the shortest-path algorithm. Our simulation results demonstrate that aircraft-aided multi-hop communications are capable of reducing the total delay of satellite communications, when relying on real historical flight data.
Wireless networks with directional antennas, like millimeter wave (mmWave) networks, have enhanced security. For a large-scale mmWave ad hoc network in which eavesdroppers are randomly located, however, eavesdroppers can still intercept the confident ial messages, since they may reside in the signal beam. This paper explores the potential of physical layer security in mmWave ad hoc networks. Specifically, we characterize the impact of mmWave channel characteristics, random blockages, and antenna gains on the secrecy performance. For the special case of uniform linear array (ULA), a tractable approach is proposed to evaluate the average achievable secrecy rate. We also characterize the impact of artificial noise in such networks. Our results reveal that in the low transmit powerregime, the use of low mmWave frequency achieves better secrecy performance, and when increasing transmit power, a transition from low mmWave frequency to high mmWave frequency is demanded for obtaining a higher secrecy rate. More antennas at the transmitting nodes are needed to decrease the antenna gain obtained by the eavesdroppers when using ULA. Eavesdroppers can intercept more information by using a wide beam pattern. Furthermore, the use of artificial noise may be ineffective for enhancing the secrecy rate.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا