ترغب بنشر مسار تعليمي؟ اضغط هنا

Secure Communications in Millimeter Wave Ad Hoc Networks

182   0   0.0 ( 0 )
 نشر من قبل Lifeng Wang
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Wireless networks with directional antennas, like millimeter wave (mmWave) networks, have enhanced security. For a large-scale mmWave ad hoc network in which eavesdroppers are randomly located, however, eavesdroppers can still intercept the confidential messages, since they may reside in the signal beam. This paper explores the potential of physical layer security in mmWave ad hoc networks. Specifically, we characterize the impact of mmWave channel characteristics, random blockages, and antenna gains on the secrecy performance. For the special case of uniform linear array (ULA), a tractable approach is proposed to evaluate the average achievable secrecy rate. We also characterize the impact of artificial noise in such networks. Our results reveal that in the low transmit powerregime, the use of low mmWave frequency achieves better secrecy performance, and when increasing transmit power, a transition from low mmWave frequency to high mmWave frequency is demanded for obtaining a higher secrecy rate. More antennas at the transmitting nodes are needed to decrease the antenna gain obtained by the eavesdroppers when using ULA. Eavesdroppers can intercept more information by using a wide beam pattern. Furthermore, the use of artificial noise may be ineffective for enhancing the secrecy rate.



قيم البحث

اقرأ أيضاً

218 - Kaibin Huang , Yan Chen , Bin Chen 2008
In cellular systems using frequency division duplex, growing Internet services cause unbalance of uplink and downlink traffic, resulting in poor uplink spectrum utilization. Addressing this issue, this paper considers overlaying an ad hoc network ont o a cellular uplink network for improving spectrum utilization and spatial reuse efficiency. Transmission capacities of the overlaid networks are analyzed, which are defined as the maximum densities of the ad hoc nodes and mobile users under an outage constraint. Using tools from stochastic geometry, the capacity tradeoff curves for the overlaid networks are shown to be linear. Deploying overlaid networks based on frequency separation is proved to achieve higher network capacities than that based on spatial separation. Furthermore, spatial diversity is shown to enhance network capacities.
The subject of this paper is the long-standing open problem of developing a general capacity theory for wireless networks, particularly a theory capable of describing the fundamental performance limits of mobile ad hoc networks (MANETs). A MANET is a peer-to-peer network with no pre-existing infrastructure. MANETs are the most general wireless networks, with single-hop, relay, interference, mesh, and star networks comprising special cases. The lack of a MANET capacity theory has stunted the development and commercialization of many types of wireless networks, including emergency, military, sensor, and community mesh networks. Information theory, which has been vital for links and centralized networks, has not been successfully applied to decentralized wireless networks. Even if this was accomplished, for such a theory to truly characterize the limits of deployed MANETs it must overcome three key roadblocks. First, most current capacity results rely on the allowance of unbounded delay and reliability. Second, spatial and timescale decompositions have not yet been developed for optimally modeling the spatial and temporal dynamics of wireless networks. Third, a useful network capacity theory must integrate rather than ignore the important role of overhead messaging and feedback. This paper describes some of the shifts in thinking that may be needed to overcome these roadblocks and develop a more general theory that we refer to as non-equilibrium information theory.
We study a wireless ad-hoc sensor network (WASN) where $N$ sensors gather data from the surrounding environment and transmit their sensed information to $M$ fusion centers (FCs) via multi-hop wireless communications. This node deployment problem is f ormulated as an optimization problem to make a trade-off between the sensing uncertainty and energy consumption of the network. Our primary goal is to find an optimal deployment of sensors and FCs to minimize a Lagrange combination of the sensing uncertainty and energy consumption. To support arbitrary routing protocols in WASNs, the routing-dependent necessary conditions for the optimal deployment are explored. Based on these necessary conditions, we propose a routing-aware Lloyd algorithm to optimize node deployment. Simulation results show that, on average, the proposed algorithm outperforms the existing deployment algorithms.
In this paper, we investigate the downlink secure beamforming (BF) design problem of cloud radio access networks (C-RANs) relying on multicast fronthaul, where millimeter-wave and microwave carriers are used for the access links and fronthaul links, respectively. The base stations (BSs) jointly serve users through cooperating hybrid analog/digital BF. We first develop an analog BF for cooperating BSs. On this basis, we formulate a secrecy rate maximization (SRM) problem subject both to a realistic limited fronthaul capacity and to the total BS transmit power constraint. Due to the intractability of the non-convex problem formulated, advanced convex approximated techniques, constrained concave convex procedures and semi-definite programming (SDP) relaxation are applied to transform it into a convex one. Subsequently, an iterative algorithm of jointly optimizing multicast BF, cooperative digital BF and the artificial noise (AN) covariance is proposed. Next, we construct the solution of the original problem by exploiting both the primal and the dual optimal solution of the SDP-relaxed problem. Furthermore, a per-BS transmit power constraint is considered, necessitating the reformulation of the SRM problem, which can be solved by an efficient iterative algorithm. We then eliminate the idealized simplifying assumption of having perfect channel state information (CSI) for the eavesdropper links and invoke realistic imperfect CSI. Furthermore, a worst-case SRM problem is investigated. Finally, by combining the so-called $mathcal{S}$-Procedure and convex approximated techniques, we design an efficient iterative algorithm to solve it. Simulation results are presented to evaluate the secrecy rate and demonstrate the effectiveness of the proposed algorithms.
Interference between nodes is a critical impairment in mobile ad hoc networks (MANETs). This paper studies the role of multiple antennas in mitigating such interference. Specifically, a network is studied in which receivers apply zero-forcing beamfor ming to cancel the strongest interferers. Assuming a network with Poisson distributed transmitters and independent Rayleigh fading channels, the transmission capacity is derived, which gives the maximum number of successful transmissions per unit area. Mathematical tools from stochastic geometry are applied to obtain the asymptotic transmission capacity scaling and characterize the impact of inaccurate channel state information (CSI). It is shown that, if each node cancels L interferers, the transmission capacity decreases as the outage probability to the power of 1/(L+1) as the outage probability vanishes. For fixed outage probability, as L grows, the transmission capacity increases as L to the power of (1-2/alpha) where alpha is the path-loss exponent. Moreover, CSI inaccuracy is shown to have no effect on the transmission capacity scaling as the outage probability vanishes, provided that the CSI training sequence has an appropriate length, which we derived. Numerical results suggest that canceling merely one interferer by each node increases the transmission capacity by an order of magnitude or more, even when the CSI is imperfect.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا