ترغب بنشر مسار تعليمي؟ اضغط هنا

Look Across Elapse: Disentangled Representation Learning and Photorealistic Cross-Age Face Synthesis for Age-Invariant Face Recognition

137   0   0.0 ( 0 )
 نشر من قبل Jian Zhao
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Despite the remarkable progress in face recognition related technologies, reliably recognizing faces across ages still remains a big challenge. The appearance of a human face changes substantially over time, resulting in significant intra-class variations. As opposed to current techniques for age-invariant face recognition, which either directly extract age-invariant features for recognition, or first synthesize a face that matches target age before feature extraction, we argue that it is more desirable to perform both tasks jointly so that they can leverage each other. To this end, we propose a deep Age-Invariant Model (AIM) for face recognition in the wild with three distinct novelties. First, AIM presents a novel unified deep architecture jointly performing cross-age face synthesis and recognition in a mutual boosting way. Second, AIM achieves continuous face rejuvenation/aging with remarkable photorealistic and identity-preserving properties, avoiding the requirement of paired data and the true age of testing samples. Third, we develop effective and novel training strategies for end-to-end learning the whole deep architecture, which generates powerful age-invariant face representations explicitly disentangled from the age variation. Moreover, we propose a new large-scale Cross-Age Face Recognition (CAFR) benchmark dataset to facilitate existing efforts and push the frontiers of age-invariant face recognition research. Extensive experiments on both our CAFR and several other cross-age datasets (MORPH, CACD and FG-NET) demonstrate the superiority of the proposed AIM model over the state-of-the-arts. Benchmarking our model on one of the most popular unconstrained face recognition datasets IJB-C additionally verifies the promising generalizability of AIM in recognizing faces in the wild.



قيم البحث

اقرأ أيضاً

To minimize the effects of age variation in face recognition, previous work either extracts identity-related discriminative features by minimizing the correlation between identity- and age-related features, called age-invariant face recognition (AIFR ), or removes age variation by transforming the faces of different age groups into the same age group, called face age synthesis (FAS); however, the former lacks visual results for model interpretation while the latter suffers from artifacts compromising downstream recognition. Therefore, this paper proposes a unified, multi-task framework to jointly handle these two tasks, termed MTLFace, which can learn age-invariant identity-related representation while achieving pleasing face synthesis. Specifically, we first decompose the mixed face feature into two uncorrelated components -- identity- and age-related feature -- through an attention mechanism, and then decorrelate these two components using multi-task training and continuous domain adaption. In contrast to the conventional one-hot encoding that achieves group-level FAS, we propose a novel identity conditional module to achieve identity-level FAS, with a weight-sharing strategy to improve the age smoothness of synthesized faces. In addition, we collect and release a large cross-age face dataset with age and gender annotations to advance the development of the AIFR and FAS. Extensive experiments on five benchmark cross-age datasets demonstrate the superior performance of our proposed MTLFace over existing state-of-the-art methods for AIFR and FAS. We further validate MTLFace on two popular general face recognition datasets, showing competitive performance for face recognition in the wild. The source code and dataset are available at~url{https://github.com/Hzzone/MTLFace}.
As facial appearance is subject to significant intra-class variations caused by the aging process over time, age-invariant face recognition (AIFR) remains a major challenge in face recognition community. To reduce the intra-class discrepancy caused b y the aging, in this paper we propose a novel approach (namely, Orthogonal Embedding CNNs, or OE-CNNs) to learn the age-invariant deep face features. Specifically, we decompose deep face features into two orthogonal components to represent age-related and identity-related features. As a result, identity-related features that are robust to aging are then used for AIFR. Besides, for complementing the existing cross-age datasets and advancing the research in this field, we construct a brand-new large-scale Cross-Age Face dataset (CAF). Extensive experiments conducted on the three public domain face aging datasets (MORPH Album 2, CACD-VS and FG-NET) have shown the effectiveness of the proposed approach and the value of the constructed CAF dataset on AIFR. Benchmarking our algorithm on one of the most popular general face recognition (GFR) dataset LFW additionally demonstrates the comparable generalization performance on GFR.
A lifespan face synthesis (LFS) model aims to generate a set of photo-realistic face images of a persons whole life, given only one snapshot as reference. The generated face image given a target age code is expected to be age-sensitive reflected by b io-plausible transformations of shape and texture, while being identity preserving. This is extremely challenging because the shape and texture characteristics of a face undergo separate and highly nonlinear transformations w.r.t. age. Most recent LFS models are based on generative adversarial networks (GANs) whereby age code conditional transformations are applied to a latent face representation. They benefit greatly from the recent advancements of GANs. However, without explicitly disentangling their latent representations into the texture, shape and identity factors, they are fundamentally limited in modeling the nonlinear age-related transformation on texture and shape whilst preserving identity. In this work, a novel LFS model is proposed to disentangle the key face characteristics including shape, texture and identity so that the unique shape and texture age transformations can be modeled effectively. This is achieved by extracting shape, texture and identity features separately from an encoder. Critically, two transformation modules, one conditional convolution based and the other channel attention based, are designed for modeling the nonlinear shape and texture feature transformations respectively. This is to accommodate their rather distinct aging processes and ensure that our synthesized images are both age-sensitive and identity preserving. Extensive experiments show that our LFS model is clearly superior to the state-of-the-art alternatives. Codes and demo are available on our project website: url{https://senhe.github.io/projects/iccv_2021_lifespan_face}.
Face presentation attack detection (PAD) has been an urgent problem to be solved in the face recognition systems. Conventional approaches usually assume the testing and training are within the same domain; as a result, they may not generalize well in to unseen scenarios because the representations learned for PAD may overfit to the subjects in the training set. In light of this, we propose an efficient disentangled representation learning for cross-domain face PAD. Our approach consists of disentangled representation learning (DR-Net) and multi-domain learning (MD-Net). DR-Net learns a pair of encoders via generative models that can disentangle PAD informative features from subject discriminative features. The disentangled features from different domains are fed to MD-Net which learns domain-independent features for the final cross-domain face PAD task. Extensive experiments on several public datasets validate the effectiveness of the proposed approach for cross-domain PAD.
Face aging is of great importance for cross-age recognition and entertainment-related applications. Recently, conditional generative adversarial networks (cGANs) have achieved impressive results for face aging. Existing cGANs-based methods usually re quire a pixel-wise loss to keep the identity and background consistent. However, minimizing the pixel-wise loss between the input and synthesized images likely resulting in a ghosted or blurry face. To address this deficiency, this paper introduces an Attention Conditional GANs (AcGANs) approach for face aging, which utilizes attention mechanism to only alert the regions relevant to face aging. In doing so, the synthesized face can well preserve the background information and personal identity without using the pixel-wise loss, and the ghost artifacts and blurriness can be significantly reduced. Based on the benchmarked dataset Morph, both qualitative and quantitative experiment results demonstrate superior performance over existing algorithms in terms of image quality, personal identity, and age accuracy.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا