ﻻ يوجد ملخص باللغة العربية
In this paper, using the stochastic geometry, we develop a tractable uplink modeling framework for the outage probability of both the single and multi-tier millimeter wave (mmWave) cellular networks. Each tiers mmWave base stations (BSs) are randomly located and they have particular spatial density, antenna gain, receiver sensitivity, blockage parameter and pathloss exponents. Our model takes account of the maximum power limitation and the per-user power control. More specifically, each user, which could be in line-of-sight (LOS) or non-LOS to its serving mmWave BS, controls its transmit power such that the received signal power at its serving BS is equal to a predefined threshold. Hence, a truncated channel inversion power control scheme is implemented for the uplink of mmWave cellular networks. We derive closed-form expressions for the signal-to-interference-and-noise-ratio (SINR) outage probability for the uplink of both the single and multi-tier mmWave cellular networks. Furthermore, we analyze the case with a dense network by utilizing the simplified model, where the LOS region is approximated as a fixed LOS disc. The results show that imposing a maximum power constraint on the user significantly affects the SINR outage probability in the uplink of mmWave cellular networks.
This paper provides the signal-to-interference-plus-noise ratio (SINR) complimentary cumulative distribution function (CCDF) and average data rate of the normalized SNR-based scheduling in an uplink cellular network using stochastic geometry. The upl
Hybrid analog and digital BeamForming (HBF) is one of the enabling transceiver technologies for millimeter Wave (mmWave) Multiple Input Multiple Output (MIMO) systems. This technology offers highly directional communication, which is able to confront
This paper focuses on quantifying the outage performance of terahertz (THz) relaying systems. In this direction, novel closed-form expressions for the outage probability of a dual-hop relaying system, in which both the source-relay and relay-destinat
This paper investigates the application of non-orthogonal multiple access in millimeter-Wave communications (mmWave-NOMA). Particularly, we consider downlink transmission with a hybrid beamforming structure. A user grouping algorithm is first propose
In this paper, we investigate the combination of two key enabling technologies for the fifth generation (5G) wireless mobile communication, namely millimeter-wave (mmWave) communications and non-orthogonal multiple access (NOMA). In particular, we co