ﻻ يوجد ملخص باللغة العربية
This paper investigates the application of non-orthogonal multiple access in millimeter-Wave communications (mmWave-NOMA). Particularly, we consider downlink transmission with a hybrid beamforming structure. A user grouping algorithm is first proposed according to the channel correlations of the users. Whereafter, a joint hybrid beamforming and power allocation problem is formulated to maximize the achievable sum rate, subject to a minimum rate constraint for each user. To solve this non-convex problem with high-dimensional variables, we first obtain the solution of power allocation under arbitrary fixed hybrid beamforming, which is divided into intra-group power allocation and inter-group power allocation. Then, given arbitrary fixed analog beamforming, we utilize the approximate zero-forcing method to design the digital beamforming to minimize the inter-group interference. Finally, the analog beamforming problem with the constant-modulus constraint is solved with a proposed boundary-compressed particle swarm optimization algorithm. Simulation results show that the proposed joint approach, including user grouping, hybrid beamforming and power allocation, outperforms the state-of-the-art schemes and the conventional mmWave orthogonal multiple access system in terms of achievable sum rate and energy efficiency.
This paper investigates the application of non-orthogonal multiple access (NOMA) in millimeter wave (mmWave) communications by exploiting beamforming, user scheduling and power allocation. Random beamforming is invoked for reducing the feedback overh
Millimeter wave (mmWave) communication is a promising New Radio in Unlicensed (NR-U) technology to meet with the ever-increasing data rate and connectivity requirements in future wireless networks. However, the development of NR-U networks should con
In this paper, we investigate the combination of non-orthogonal multiple access and millimeter-Wave communications (mmWave-NOMA). A downlink cellular system is considered, where an analog phased array is equipped at both the base station and users. A
The integration of non-orthogonal multiple access in millimeter-Wave communications (mmWave-NOMA) can significantly improve the spectrum efficiency and increase the number of users in the fifth-generation (5G) mobile communication. In this paper we c
The combination of non-orthogonal multiple access (NOMA) and intelligent reflecting surface (IRS) is an efficient solution to significantly enhance the energy efficiency of the wireless communication system. In this paper, we focus on a downlink mult