ترغب بنشر مسار تعليمي؟ اضغط هنا

Investigating the possibility of reversing giant planet migration via gap edge illumination

384   0   0.0 ( 0 )
 نشر من قبل Paul Hallam
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A massive planet in a protoplanetary disc will open a gap in the disc material which acts as a transition between Type I and Type II planetary migration. Type II migration is slower than Type I migration, however it is still desirable to slow down Type II migration to allow gas giant planets with semi-major axis in the range 5 to 10AU to exist, similarly to our Solar system. We investigate a method of slowing down and reversing Type II migration by heating the outer gap edge due to incident radiation from the central star. Using an approximate vertically averaged heating method we find that Type II migration can be slowed or in extreme cases reversed if we assume near maximum allowed irradiation from the central star. Therefore, we believe this is a very interesting phenomenon that should be investigated in greater detail using three dimensional hydrodynamic and radiative transfer simulations.



قيم البحث

اقرأ أيضاً

We present the results of our recent study on the interactions between a giant planet and a self-gravitating gas disk. We investigate how the disks self-gravity affects the gap formation process and the migration of the giant planet. Two series of 1- D and 2-D hydrodynamic simulations are performed. We select several surface densities and focus on the gravitationally stable region. To obtain more reliable gravity torques exerted on the planet, a refined treatment of disks gravity is adopted in the vicinity of the planet. Our results indicate that the net effect of the disks self-gravity on the gap formation process depends on the surface density of the disk. We notice that there are two critical values, Sigma_I and Sigma_II. When the surface density of the disk is lower than the first one, Sigma_0 < Sigma_I, the effect of self-gravity suppresses the formation of a gap. When Sigma_0 > Sigma_I, the self-gravity of the gas tends to benefit the gap formation process and enlarge the width/depth of the gap. According to our 1-D and 2-D simulations, we estimate the first critical surface density Sigma_I approx 0.8MMSN. This effect increases until the surface density reaches the second critical value Sigma_II. When Sigma_0 > Sigma_II, the gravitational turbulence in the disk becomes dominant and the gap formation process is suppressed again. Our 2-D simulations show that this critical surface density is around 3.5MMSN. We also study the associated orbital evolution of a giant planet. Under the effect of the disks self-gravity, the migration rate of the giant planet increases when the disk is dominated by gravitational turbulence. We show that the migration timescale associates with the effective viscosity and can be up to 10^4 yr.
Transition discs are expected to be a natural outcome of the interplay between photoevaporation (PE) and giant planet formation. Massive planets reduce the inflow of material from the outer to the inner disc, therefore triggering an earlier onset of disc dispersal due to PE through a process known as Planet-Induced PhotoEvaporation (PIPE). In this case, a cavity is formed as material inside the planetary orbit is removed by PE, leaving only the outer disc to drive the migration of the giant planet. We investigate the impact of PE on giant planet migration and focus specifically on the case of transition discs with an evacuated cavity inside the planet location. This is important for determining under what circumstances PE is efficient at halting the migration of giant planets, thus affecting the final orbital distribution of a population of planets. For this purpose, we use 2D FARGO simulations to model the migration of giant planets in a range of primordial and transition discs subject to PE. The results are then compared to the standard prescriptions used to calculate the migration tracks of planets in 1D planet population synthesis models. The FARGO simulations show that once the disc inside the planet location is depleted of gas, planet migration ceases. This contradicts the results obtained by the impulse approximation, which predicts the accelerated inward migration of planets in discs that have been cleared inside the planetary orbit. These results suggest that the impulse approximation may not be suitable for planets embedded in transition discs. A better approximation that could be used in 1D models would involve halting planet migration once the material inside the planetary orbit is depleted of gas and the surface density at the 3:2 mean motion resonance location in the outer disc reaches a threshold value of $0.01,mathrm{g,cm^{-2}}$.
We carried out a Bayesian homogeneous determination of the orbital parameters of 231 transiting giant planets (TGPs) that are alone or have distant companions; we employed DE-MCMC methods to analyse radial-velocity (RV) data from the literature and 7 82 new high-accuracy RVs obtained with the HARPS-N spectrograph for 45 systems over 3 years. Our work yields the largest sample of systems with a transiting giant exoplanet and coherently determined orbital, planetary, and stellar parameters. We found that the orbital parameters of TGPs in non-compact planetary systems are clearly shaped by tides raised by their host stars. Indeed, the most eccentric planets have relatively large orbital separations and/or high mass ratios, as expected from the equilibrium tide theory. This feature would be the outcome of high-eccentricity migration (HEM). The distribution of $alpha=a/a_R$, where $a$ and $a_R$ are the semi-major axis and the Roche limit, for well-determined circular orbits peaks at 2.5; this also agrees with expectations from the HEM. The few planets of our sample with circular orbits and $alpha >5$ values may have migrated through disc-planet interactions instead of HEM. By comparing circularisation times with stellar ages, we found that hot Jupiters with $a < 0.05$ au have modified tidal quality factors $10^{5} < Q_p < 10^{9}$, and that stellar $Q_s > 10^{6}-10^{7}$ are required to explain the presence of eccentric planets at the same orbital distance. As a by-product of our analysis, we detected a non-zero eccentricity for HAT-P-29; we determined that five planets that were previously regarded to have hints of non-zero eccentricity have circular orbits or undetermined eccentricities; we unveiled curvatures caused by distant companions in the RV time series of HAT-P-2, HAT-P-22, and HAT-P-29; and we revised the planetary parameters of CoRoT-1b.
Immediately after their formation, the terrestrial planets experienced intense impact bombardment by comets, leftover planetesimals from primary accretion, and asteroids. This temporal interval in solar system evolution, termed late accretion, therma lly and chemically modified solid planetary surfaces and may have impeded the emergence of life on the Hadean Earth. The sources and tempo of late accretion are, however, vague. Here, we present a timeline that relates variably retentive radiometric ages from asteroidal meteorites, to new dynamical models of late accretion that invokes giant planet migration. Reconciliation of the geochronological data with dynamical models shows that giant planet migration immediately leads to an intense 30 Myr influx of comets to the entire solar system. The absence of whole-sale crustal reset ages after 4450 Ma for the most resilient chronometers from Earth, Moon, Mars, Vesta and various meteorite parent bodies confines the onset of giant planet migration to no later than ca. 4480 Ma. Waning impacts from planetesimals, asteroids (and a minor cometary component) continue to strike the inner planets through a protracted monotonic decline in impactor flux; this is in agreement with predictions from crater chronology. Amended global 3-D thermal analytical bombardment models derived from our new impact mass-production functions show that persistent niches for prebiotic chemistry on the early Hadean Earth could endure late accretion for at least the last 4400 Myr.
A planet is formed within a protoplanetary disk. Recent observations have revealed substructures such as gaps and rings, which may indicate forming planets within the disk. Due to disk--planet interaction, the planet migrates within the disk, which c an affect a shape of the planet-induced gap. In this paper, we investigate effects of fast inward migration of the planet on the gap shape, by carrying out hydrodynamic simulations. We found that when the migration timescale is shorter than the timescale of the gap-opening, the orbital radius is shifted inward as compared to the radial location of the gap. We also found a scaling relation between the radial shift of the locations of the planet and the gap as a function of the ratio of the timescale of the migration and gap-opening. Our scaling relation also enables us to constrain the gas surface density and the viscosity when the gap and the planet are observed. Moreover, we also found the scaling relation between the location of the secondary gap and the aspect ratio. By combining the radial shift and the secondary gap, we may constrain the physical condition of the planet formation and how the planet evolves in the protoplanetary disk, from the observational morphology.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا