ﻻ يوجد ملخص باللغة العربية
It is a long-standing question whether an arbitrary variety is desingularized by finitely many normalized Nash blow-ups. We consider this question in the case of a toric variety. We interpret the normalized Nash blow-up in polyhedral terms, show how continued fractions can be used to give an affirmative answer for a toric surface, and report on a computer investigation in which over a thousand 3- and 4-dimensional toric varieties were successfully resolved.
Given an arbitrary projective birational morphism of varieties, we provide a natural and explicit way of constructing relative compactifications of the maps induced on the main components of the jet schemes. In the case the morphism is the Nash blow-
We call a sheaf on an algebraic variety immaculate if it lacks any cohomology including the zero-th one, that is, if the derived version of the global section functor vanishes. Such sheaves are the basic tools when building exceptional sequences, inv
We use a polyhedral criterion for the existence of diagonal splittings to investigate which toric varieties X are diagonally split. Our results are stated in terms of the vector configuration given by primitive generators of the 1-dimensional cones i
We prove a universal property for blow-ups in regularly immersed subschemes, based on a notion we call virtual effective Cartier divisor. We also construct blow-ups of quasi-smooth closed immersions in derived algebraic geometry.
We study the proalgebraic space which is the inverse limit of all finite branched covers over a normal toric variety $X$ with branching set the invariant divisor under the action of $(mathbb{C}^*)^n$. This is the proalgebraic toric-completion $X_{mat