ﻻ يوجد ملخص باللغة العربية
Studying the stellar mass, age, luminosity, star-formation rate, and impact parameter of quasar absorber host galaxies can aid in the understanding of galaxy formation and evolution as well as in testing their models. We derive the Spectral Energy Distribution (SED) and impact parameter limits of low redshift ($z_{abs} = 0.37 - 0.55$) Mg II absorbers and of higher redshift ($z_{abs} = 1.0 - 2.5$) 2175 AA dust absorbers (2DAs). We use an imaging stacking technique to statistically boost the signal-to-noise ratio (SNR) to increase detection of the absorber host galaxies. The point spread function of the background quasar is modeled with Principal Component Analysis (PCA). This method efficiently reduces the uncertainty of traditional PSF modeling. Our SED for Mg II absorbers indicates that low redshift Mg II absorber host galaxies are likely star-forming galaxies transitioning into red quiescent galaxies, with a low star formation rate of 2.2 $M_odot$ $yr^{-1}$. From the stacked images and simulations, we show that the average impact parameter of 2DAs is > 5 times smaller than that of Mg II absorbers, at < 7 kpc instead of Mg II absorbers 48 kpc, indicating that 2DAs are likely associated with disk components of high redshift galaxies. This means that 2DAs are likely good probes to study precursors to the Milky Way.
We analyze relative abundances and ionization conditions in a strong absorption system at z=6.84, seen in the spectrum of the z=7.54 background quasar ULAS J134208.10+092838.61. Singly ionized C, Si, Fe, Mg, and Al measurements are consistent with a
We report on ~0.35(~2 kpc) resolution observations of the [CII] and dust continuum emission from five z>6 quasar host-companion galaxy pairs obtained with the Atacama Large Millimeter/submillimeter Array. The [CII] emission is resolved in all galaxie
A significant minority of high redshift radio galaxy (HzRG) candidates show extremely red broad band colours and remain undetected in emission lines after optical `discovery spectroscopy. In this paper we present deep GTC optical imaging and spectros
The empirical correlation between the mass of a super-massive black hole (MBH) and its host galaxy properties is widely considered to be evidence of their co-evolution. A powerful way to test the co-evolution scenario and learn about the feedback pro
To study the effect of supermassive black holes (SMBHs) on their host galaxies it is important to study the hosts when the SMBH is near its peak activity. A method to investigate the host galaxies of high luminosity quasars is to obtain optical spect