ﻻ يوجد ملخص باللغة العربية
When two identical fermions exchange their positions, their wave function gains phase factor $-1$. We show that this distance-independent effect can induce nonlocal entanglement in one-dimensional (1D) electron systems having Majorana fermions at the ends. It occurs in the system bulk and has nontrivial temperature dependence. In a system having a single Majorana at each end, the nonlocal entanglement has a Bell-state form at zero temperature and decays as temperature increases, vanishing suddenly at certain finite temperature. In a system having two Majoranas at each end, it is in a cluster-state form and its nonlocality is more noticeable at finite temperature. By contrast, thermal states of corresponding 1D spins do not have nonlocal entanglement.
Spin-orbit qubit (SOQ) is the dressed spin by the orbital degree of freedom through a strong spin-orbit coupling. We show that Coulomb interaction between two electrons in quantum dots located separately in two nanowires can efficiently induce quantu
A study of the thermal properties of two-dimensional topological lattice models is presented. This work is relevant to assess the usefulness of these systems as a quantum memory. For our purposes, we use the topological mutual information $I_{mathrm{
Self-assembled quantum dots are ideal structures in which to test theories of open quantum systems: Confined exciton states can be coherently manipulated and their decoherence properties are dominated by interactions with acoustic phonons. We here de
The existence of robust chiral edge states in a finite topologically nontrivial chern insulator is a consequence of the bulk-boundary correspondence. In this paper, we present a theoretical framework based on lattice Greens function to study the scat
We present studies of thermal entanglement of a three-spin system in triangular symmetry. Spin correlations are described within an effective Heisenberg Hamiltonian, derived from the Hubbard Hamiltonian, with super-exchange couplings modulated by an