ﻻ يوجد ملخص باللغة العربية
Abrupt fluorescence intermittency or blinking is long recognized to be characteristic of single nano-emitters. Extended quantum-confined nanostructures also undergo spatially heterogeneous blinking, however, there is no such precedence in dimensionally unconfined (bulk) materials. Here, we report multi-level blinking of entire individual organo-lead bromide perovskite micro-crystals (volume 0.1-3 micron-cuble) under ambient conditions. Extremely high spatiotemporal correlation (>0.9) in intra-crystal emission intensity fluctuations signifies effective communication amongst photogenerated carriers at distal locations (up to ~4 microns) within each crystal. Fused polycrystalline grains also exhibit this intriguing phenomenon, which is rationalized by correlated and efficient migration of carriers to a few transient non-radiative traps, the nature and population of which determine blinking propensity. Observation of spatiotemporally correlated emission intermittency in bulk semiconductor crystals opens up the possibility to design novel devices involving long range (mesoscopic) electronic communication.
The photoluminescence intermittency (blinking) of quantum dots is interesting because it is an easily-measured quantum process whose transition statistics cannot be explained by Fermis Golden Rule. Commonly, the transition statistics are power-law di
Photoluminescence (PL) intermittency is a ubiquitous phenomenon detrimentally reducing the temporal emission intensity stability of single colloidal quantum dots (CQDs) and the emission quantum yield of their ensembles. Despite efforts for blinking r
The MAPbI$_3$ halide perovskite single crystals are studied at 5 K temperature using the photoluminescence excitation spectroscopy. Two non-interacting types of states are determined: bound excitons and defect-related states. Excitation of the crysta
We study time series produced by the blinking quantum dots, by means of an aging experiment, and we examine the results of this experiment in the light of two distinct approaches to complexity, renewal and slow modulation. We find that the renewal ap
We have produced magnetic patterns suitable for trapping and manipulating neutral atoms on a $1 mu$m length scale. The required patterns are made in Co/Pt thin films on a silicon substrate, using the heat from a focussed laser beam to induce controll