ترغب بنشر مسار تعليمي؟ اضغط هنا

Defect-related states in MAPbI$_3$ halide perovskite single crystals revealed by the photoluminescence excitation spectroscopy

74   0   0.0 ( 0 )
 نشر من قبل Aleksei Murzin
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A. O. Murzin




اسأل ChatGPT حول البحث

The MAPbI$_3$ halide perovskite single crystals are studied at 5 K temperature using the photoluminescence excitation spectroscopy. Two non-interacting types of states are determined: bound excitons and defect-related states. Excitation of the crystal with light energy below the bound exciton resonance reveals the complex low-density defects emission, otherwise hidden by the emission of bound excitons. A way to separate these defect-related luminescence spectra is proposed, and the thorough study of this emission regime is carried out. The results of this study opens an area of low-density defects and dopants exploration in halide perovskite semiconductors.



قيم البحث

اقرأ أيضاً

We show that new low-energy photoluminescence (PL) bands can be created in semiconducting single-walled carbon nanotubes by intense pulsed excitation. The new bands are attributed to PL from different nominally dark excitons that are brightened due t o defect-induced mixing of states with different parity and/or spin. Time-resolved PL studies on single nanotubes reveal a significant reduction of the bright exciton lifetime upon brightening of the dark excitons. The lowest energy dark state has longer lifetimes and is not in thermal equilibrium with the bright state.
Rydberg excitons are, with their ultrastrong mutual interactions, giant optical nonlinearities, and very high sensitivity to external fields, promising for applications in quantum sensing and nonlinear optics at the single-photon level. To design qua ntum applications it is necessary to know how Rydberg excitons and other excited states relax to lower-lying exciton states. Here, we present photoluminescence excitation spectroscopy as a method to probe transition probabilities from various excitonic states in cuprous oxide, and we show giant Rydberg excitons at $T=38$ mK with principal quantum numbers up to $n=30$, corresponding to a calculated diameter of 3 $mu$m.
Point defects in metal halide perovskites play a critical role in determining their properties and optoelectronic performance; however, many open questions remain unanswered. In this work, we apply impedance spectroscopy and deep-level transient spec troscopy to characterize the ionic defect landscape in methylammonium lead triiodide ($MAPbI_3$) perovskites in which defects were purposely introduced by fractionally changing the precursor stoichiometry. Our results highlight the profound influence of defects on the electronic landscape, exemplified by their impact on the device built-in potential, and consequently, the open-circuit voltage. Even low ion densities can have an impact on the electronic landscape when both cations and anions are considered as mobile. Moreover, we find that all measured ionic defects fulfil the Meyer--Neldel rule with a characteristic energy connected to the underlying ion hopping process. These findings support a general categorization of defects in halide perovskite compounds.
263 - Y. Murakami , J. Kono 2008
We have studied emission properties of high-density excitons in single-walled carbon nanotubes through nonlinear photoluminescence excitation spectroscopy. As the excitation intensity was increased, all emission peaks arising from different chiraliti es showed clear saturation in intensity. Each peak exhibited a saturation value that was independent of the excitation wavelength, indicating that there is an upper limit on the exciton density for each nanotube species. We developed a theoretical model based on exciton diffusion and exciton-exciton annihilation that successfully reproduced the saturation behavior, allowing us to estimate exciton densities. These estimated densities were found to be still substantially smaller than the expected Mott density even in the saturation regime, in contrast to conventional semiconductor quantum wires.
71 - Kyrylo Greben 2019
We investigate an excitonic peak appearing in low-temperature photoluminescence of monolayer transition metal dichalcogenides (TMDCs), which is commonly associated with defects and disorder. First, to uncover the intrinsic origin of defect-related ex citons, we study their dependence on gate voltage, excitation power, and temperature in a prototypical TMDC monolayer, $MoS_2$. We show that the entire range of behaviors of defect-related excitons can be understood in terms of a simple model, where neutral excitons are bound to ionized donor levels, likely related to sulphur vacancies, with a density of $7cdot10^{11} cm^{-2}$. Second, to study the extrinsic origin of defect-related excitons, we controllably deposit oxygen molecules in-situ onto the surface of $MoS_2$ kept at cryogenic temperature. We find that in addition to trivial p-doping of $3cdot10^{12} cm^{-2}$, oxygen affects the formation of defect-related excitons by functionalizing the vacancy. Combined, our results uncover the origin of defect-related excitons, suggest a simple and conclusive approach to track the functionalization of TMDCs, benchmark device quality, and pave the way towards exciton engineering in hybrid organic-inorganic TMDC devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا